Eigenvalue Methods for Sparse Tropical Polynomial Systems

Marianne Akian, <u>Antoine Béreau</u>, Stéphane Gaubert

CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, Inria

October 21st, 2024

A Tropical Day, École polytechnique

- Given system of tropical polynomial equations or inequations, how to check the existence of, and then compute a solution in \mathbb{R}^n .
- Main tools in the classical setting include the theory of resultants,
 Macaulay matrices and effective Null- and Positivstellensatz.
- In this talk, we develop the tropical analog of the sparse Null- and Positivstellensatz, and explore the solvability of tropical polynomial systems by means of mean payoff games, and nonlinear eigenvalues of Shapley operators.

Tropical algebra and tropical polynomials

The tropical Null- and Positivstellensatz

Mean payoff games and tropical linear systems

I - Tropical algebra and tropical polynomials

- lacktriangledown Tropical semiring $\mathbb{T}:=(\mathbb{R}\cup\{-\infty\},\oplus,\odot,0,1)$ with
 - \diamond addition $\oplus := \max;$
 - \diamond multiplication $\odot := +;$
 - \diamond zero element $0 := -\infty$;
 - \diamond unit element 1 := 0.
- Satisfies the usual properties of a field except no additive inverse.
- Tropical operations can be extended to vectors and matrices with coefficients in T to perform tropical linear algebra.

A formal tropical polynomial p in n variables is a map

$$\mathbb{N}^n \longrightarrow \mathbb{T}$$

$$\alpha \longmapsto p_\alpha$$

such that $p_{\alpha} \neq 0$ for finitely many $\alpha \in \mathbb{Z}^n$. We denote $p = \bigoplus_{\alpha \in \mathbb{N}^n} p_{\alpha} X^{\alpha}$.

- **Support** of p: supp $(p) := \{ \alpha \in \mathbb{N}^n : p_{\alpha} \neq 0 \}.$
- Polynomial function associated to p:

$$\mathbb{T}^n \longrightarrow \mathbb{T}$$
 $x \longmapsto \max_{\alpha \in \mathcal{A}} (p_\alpha + \langle x, \alpha \rangle)$

with A = supp(p).

A point $x \in \mathbb{T}^n$ is a **root** of a polynomial p whenever the maximum in the expression

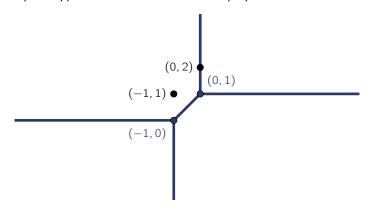
$$\bigoplus_{\alpha \in A} p_{\alpha} \odot x^{\odot \alpha} = \max_{\alpha \in A} (p_{\alpha} + \langle x, \alpha \rangle)$$

is attained for at least two distinct values of α . This is denoted as $p(x) \nabla \mathbb{O}$.

Exemple : Let $f_1 = 1 \oplus 2x_1 \oplus 1x_2 \oplus 1x_1x_2$, then:

- (0, 2) is a root of f_1 since the maximum of $f_1(0, 2) = 3$ is attained simultaneously by the monomials $1x_2$ and $1x_1x_2$;
- (-1, 1) is not a root of f_1 since the maximum $f_1(-1, 1) = 2$ is attained only by the monomial $1x_2$.

The tropical hypersurface associated to the polynomial f_1 is:



Likewise, $y \in \mathbb{T}^m$ is said to be in the **tropical right null space** or **kernel** of a $\ell \times m$ matrix $A = (a_{ij})$ whenever for all $1 \le i \le \ell$, the maximum in the expression

$$\bigoplus_{j=1}^{m} a_{ij} \odot y_j = \max_{1 \le j \le m} (a_{ij} + y_j)$$

is achieved at least twice. This is also denoted as $A \odot y \nabla \mathbb{O}$.

More on tropical geometry: D. Maclagan and B. Sturmfels. *Introduction to Tropical Geometry*. Graduate Studies in Mathematics. American Mathematical Society, 2015.

II - The tropical Null- and Positivstellensatz

In the following, we fix a collection $f = (f_1, \ldots, f_k)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_k)$ and degrees (d_1, \ldots, d_k) .

Problem: Decide whether there is a common tropical zero $x \in \mathbb{R}^n$, that is such that $f_i(x) \nabla 0$ for all $1 \le i \le n$.

Remark: The same question for a solution in \mathbb{T}^n reduces to the \mathbb{R}^n case by looking at all possible supports.

Figure: The arrangement of tropical varieties of the polynomials from the system

$$(E_1): \left\{ \begin{array}{lcl} f_1 & = & 1 \oplus 2x_1 \oplus 1x_2 \oplus 1x_1x_2 \\ f_2 & = & 0 \oplus 0x_1 \oplus 1x_2 \\ f_3 & = & 2x_1 \oplus 0x_2 \end{array} \right..$$

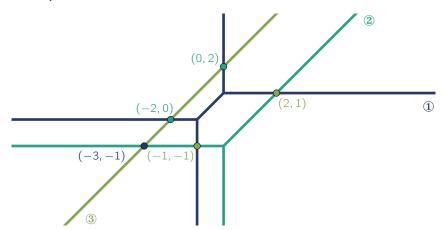
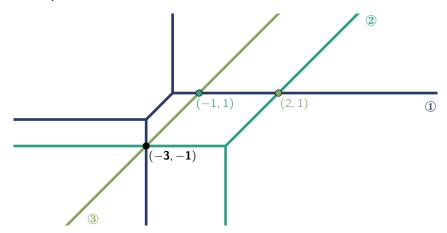


Figure: The arrangement of tropical varieties of the polynomials from the system

$$(E_2): \left\{ \begin{array}{lcl} f_1 & = & 1 \oplus 4x_1 \oplus 1x_2 \oplus 3x_1x_2 \\ f_2 & = & 0 \oplus 0x_1 \oplus 1x_2 \\ f_3 & = & 2x_1 \oplus 0x_2 \end{array} \right..$$



Link with classical varieties:

- Kapranov's theorem
- The Fundamental Theorem of Tropical Algebraic Geometry

Varied applications:

- celestial mechanics (Hampton, Moeckel)
- max-out networks (Montúfar, Ren, Zhang)
- chemical reaction networks (Dickenstein, Feliu, Radulescu, Shiu)
- emergency call center (Akian, Boyer, Gaubert)

The **Macaulay matrix** associated to f is the infinite matrix $\mathcal{M} = (m_{(i,\alpha),\beta})$ indexed by $([n] \times \mathbb{N}^n) \times \mathbb{N}^n$, where $m_{(i,\alpha),\beta}$ corresponds to the coefficient of X^β in the polynomial $X^\alpha f_i$.

One approach to the **Nullstellensatz** is a linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of the Macaulay matrix.

- The Macaulay matrix associated to f is the **infinite** matrix $\mathcal{M} = (m_{(i,\alpha),\beta})$ indexed by $([n] \times \mathbb{N}^n) \times \mathbb{N}^n$, where $m_{(i,\alpha),\beta}$ corresponds to the coefficient of X^β in the polynomial $X^\alpha f_i$.
- A finite subset \mathcal{E} of \mathbb{N}^n yields a **finite** submatrix $\mathcal{M}_{\mathcal{E}}$ of \mathcal{M} obtained by taking only the rows whose support is included in \mathcal{E} and the columns indexed by \mathcal{E} .
- Set $\mathcal{M}_N := \mathcal{M}_{\mathcal{E}}$ for $\mathcal{E} = \{ \alpha \in \mathbb{N}^n : \alpha_1 + \cdots + \alpha_n \leq N \}.$

Conjecture [Grigoriev (2012)]: There exists an integer N such that

$$\exists x \in \mathbb{R}^n$$
 such that $f_i(x) \nabla \mathbb{0}$ for $i=1,\ldots,k$ \iff $\exists y \in \mathbb{R}^m$ such that $\mathcal{M}_N \odot y \nabla \mathbb{0}$ with $m=\binom{N+n}{n}$.

Answer:

• Grigoriev, Podolskii (2018): true for

$$N = (n+2)(d_1 + \cdots + d_k) .$$

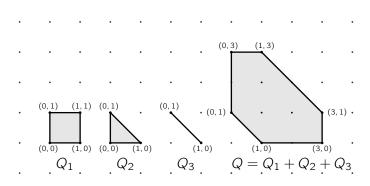
• Akian, B., Gaubert (2023): true for

$$N = d_1 + \cdots + d_k - 1$$

(and even $N = d_1 + \cdots + d_k - n$ in most cases) + adapted approach for the case of sparse polynomials.

• For $1 \le i \le k$, $Q_i := conv(A_i)$ is the **Newton polytope** of f_i .

Example: The Newton polytopes associated to both system (E_1) and system (E_2) and their Minkowski sum are as follow.



• Canny-Emiris set associated to $f: \mathcal{E} = (Q + \delta) \cap \mathbb{Z}^n$ with δ a generic vector in the linear space directing the affine hull of Q.

Example: Considering again the systems (E_1) and (E_2) , for

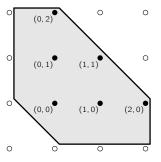
$$\delta = (-1 + \varepsilon, -1 + \varepsilon)$$

with $\varepsilon>0$ sufficiently small, we obtain the Canny-Emiris set

$$\mathcal{E} := (Q + \delta) \cap \mathbb{Z}^n = \{(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)\}$$

corresponding to the set of monomials $\{1, x_1, x_2, x_1^2, x_1x_2, x_2^2\}$.

Figure: The polytope $Q + \delta$ with $\delta = (-0.9, -0.9)$.



Nullstellensatz for Sparse Tropical Polynomial Systems

The system $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^n$ iff there exists a vector $y \in \mathbb{R}^{\mathcal{E}'}$ in the tropical right null space of the submatrix $\mathcal{M}_{\mathcal{E}'}$ of \mathcal{M} , where \mathcal{E}' is any subset of \mathbb{Z}^n containing a nonempty Canny-Emiris set \mathcal{E} .

Corollary: The system $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^n$ if and only if the truncated Macaulay tropical linear system $\mathcal{M}_N \odot y \nabla \mathbb{O}$ has a solution $y \in \mathbb{R}^m$ for

$$N = d_1 + \cdots + d_k - 1 ,$$

where $d_i = \deg(f_i)$ for all $1 \le i \le k$. Moreover, if Q has full dimension, then one can take $N = d_1 + \cdots + d_k - n$ in the previous statement.

Example: The matrix associated with system (E_1) is

$$\mathcal{M}_{\mathcal{E}}^{(1)} = \begin{pmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 \\ f_1 & f_2 & \begin{pmatrix} 1 & 2 & 1 & & 1 & \\ 0 & 0 & 1 & & & \\ & 0 & & 0 & 1 & \\ & & 0 & & 0 & 1 \\ & & 0 & & 0 & 1 \\ & & 2 & 0 & & & \\ & & & & 2 & 0 & \\ & & & & & 2 & 0 \end{pmatrix}.$$

There is no finite vector in its tropical right null space and thus there is no finite solution to the equation $f \nabla \mathbb{O}$.

Example: The matrix associated with system (E_2) is

$$\mathcal{M}_{\mathcal{E}}^{(2)} = \begin{pmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 \\ f_1 & 4 & 1 & & 3 \\ 0 & 0 & 1 & & & \\ 0 & 0 & 1 & & & \\ 0 & & 0 & 1 & & \\ 0 & & 0 & 1 & & \\ 0 & & & 0 & 1 \\ 2 & 0 & & & & \\ x_1f_3 & & & & 2 & 0 \\ x_2f_3 & & & & 2 & 0 \end{pmatrix}.$$

The vector y = ver(-3, -1) = (0, -3, -1, -6, -4, -2) is finite and is in the tropical right null space of the previous matrix, hence there is a finite solution to the equation $f \nabla 0$, which is indeed given by (-3, -1).

- Let $f^{\pm} = (f_1^{\pm}, \dots, f_k^{\pm})$ be two collections of tropical polynomials. For $1 \le i \le k$, denote by \mathcal{A}_i^{\pm} the support of f_i^{\pm} .
- Set $\triangleright = (\triangleright_1, \dots, \triangleright_k)$ a collection of relations, with $\triangleright_i \in \{\ge, =, >\}$ for $1 \le i \le k$.

We denote by $f^+(x) \triangleright f^-(x)$ the system

$$\max_{\alpha \in \mathcal{A}_{i}^{+}} \left(f_{i,\alpha}^{+} + \langle \alpha, x \rangle \right) \rhd_{i} \max_{\alpha \in \mathcal{A}_{i^{-}}} \left(f_{i,\alpha}^{-} + \langle \alpha, x \rangle \right) \text{ for all } 1 \leq i \leq k$$

of unknown $x \in (\mathbb{R} \cup \{-\infty\})^n$.

- Let \mathcal{M}^{\pm} be the Macaulay matrices associated to $f^{\pm}-i.e.$ with entries $f^{\pm}_{i,\beta-\alpha}$. For any subset \mathcal{E} of \mathbb{Z}^n , denote by $\mathcal{M}^{\pm}_{\mathcal{E}}$ the submatrices of \mathcal{M}^{\pm} by taking only the row indices $(i,\alpha)\in[k]\times\mathbb{Z}^n$ such that the supports of the rows (i,α) of both \mathcal{M}^+ and \mathcal{M}^- is included in \mathcal{E} and the column indices given by \mathcal{E} .
- Finally, denote by $\mathcal{M}_{\mathcal{E}}^+ \odot y \rhd \mathcal{M}_{\mathcal{E}}^- \odot y$ the following system of tropical linear inequalities:

$$\max_{\beta \in \mathcal{E}} \left(\mathcal{M}^+_{(i,\alpha),\beta} + y_\beta \right) \rhd_i \max_{\beta \in \mathcal{E}} \left(\mathcal{M}^-_{(i,\alpha),\beta} + y_\beta \right) \text{ for all } 1 \leq i \leq k.$$

Let $\widetilde{Q} = r_1Q_1 + \cdots + r_kQ_k$, where $Q_i = \text{conv}(\mathcal{A}_i^+ \cup \mathcal{A}_i^-)$ for $i = 1, \dots, k$, and

$$r_i = \begin{cases} \min(|\mathcal{A}_i^-|, n+1) & \text{if } \triangleright_i \in \{\ge, >\} \\ \min(\max(|\mathcal{A}_i^-|, |\mathcal{A}_i^+|), n+1) & \text{if } \triangleright_l \in \{=\} \end{cases}.$$

We now call **Canny-Emiris subsets** of \mathbb{Z}^n associated to the pair of collections (f^+, f^-) any set \mathcal{E} of the form

$$\mathcal{E}:=\left(\widetilde{Q}+\delta
ight)\cap\mathbb{Z}^n$$
 ,

where δ is a generic vector in $V + \mathbb{Z}^n$, with V the direction of the affine hull of \widetilde{Q} .

Tropical Positivstellensatz

There exists a solution $x \in \mathbb{R}^n$ to the system $f^+(x) \rhd f^-(x)$ if and only if there exists a vector $y \in \mathbb{R}^{\mathcal{E}'}$ satisfying $\mathcal{M}^+_{\mathcal{E}'} \odot y \rhd \mathcal{M}^-_{\mathcal{E}'} \odot y$, where \mathcal{E}' is any subset of \mathbb{Z}^n containing a nonempty Canny-Emiris subset \mathcal{E} of \mathbb{Z}^n associated to the pair (f^+, f^-) .

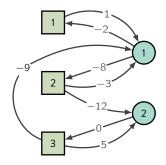
Corollary: The inclusion of basic tropical semialgebraic sets can be reduced to solving a set of tropical linear (in)equalities.

III - Mean payoff games and tropical linear systems

Mean payoff games (See Gillette (1957), Gurvich, Karzanov, Khachiyan (1988), Zwick, Patterson (1996)):

- $G = (I \sqcup J, E)$ a (finite) oriented weighted bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i,j) is an arc of G with weight b_{ij} and obtains a payment of b_{ij} from player Min, then player Min from state $j \in J$, chooses the next state $k \in I$ along an arc (k,j) with weight $-a_{kj}$, and receives in turn a payment of a_{kj} from player Max;
- the winner is the player who gets the highest average payment per turn;
- set $A = (a_{ij})_{(i,j) \in I \times J}$ et $B = (b_{ij})_{(i,j) \in I \times J}$.

Example: Let G be the following graph:

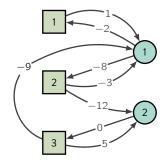


One has
$$A=\begin{pmatrix}2&-\infty\\8&-\infty\\-\infty&0\end{pmatrix}$$
 and $B=\begin{pmatrix}1&-\infty\\-3&-12\\-9&5\end{pmatrix}$.

Theorem [Akian, Gaubert, Guterman (2012)]: For all $j \in J$, player Max has a winning positional strategy for the *mean pay-off game* given by the payment matrices A and B by playing the initial move j iff there exists a solution $y \in (\mathbb{R} \cup \{-\infty\})^J$ of the tropical matrix inequality $A \odot y \leq B \odot y$ such that $y_j \neq \emptyset$.

The winning initial moves correspond to the support of the solutions of the inequality $A \odot y \leq B \odot y$.

In the previous example,



one has
$$A \odot y \le B \odot y \iff \begin{cases} 2 + y_1 \le 1 + y_1 \\ 8 + y_1 \le \max(-3 + y_1, -12 + y_2) \\ y_2 \le \max(-9 + y_1, 5 + y_2). \end{cases}$$

The first inequality shows that every solution $y \in (\mathbb{R} \cup \{-\infty\})^2$ must satisfy $y_1 = 0$, which implies that the two other inesualities are satisfied for all values of $y_2 \in \mathbb{R} \cup \{-\infty\}$.

This translates into the fact that the move 1 is a losing move for player Max, while the move 2 is a winning move.

Shapley operator associated to a mean payoff game

$$T: \begin{array}{ccc} (\mathbb{R} \cup \{\pm \infty\})^J & \longrightarrow & (\mathbb{R} \cup \{\pm \infty\})^J \\ y = (y_j)_{j \in J} & \longmapsto & \left(\min_{i \in I} -a_{ij} + \left(\max_{k \in J} b_{ik} + y_k\right)\right)_{j \in J} \end{array}$$

• value of the game: $\chi(T) = \lim_{n \to +\infty} \frac{T^n(0)}{n}$

Corollary: $\exists y \in \mathbb{R}^J$ such that $A \odot y \leq B \odot y$ iff $\min_{j \in J} \chi_j(T) \geq 0$.

Link with nonlinear eigenvalue theory:

$$\min\{\chi_{j}(T): j \in J\}$$

$$= \sup\{\lambda \in \mathbb{R}: \exists u \in \mathbb{R}^{J}, T(u) \geq \lambda + u\}$$

$$= \inf\{\lambda \in \mathbb{R} \cup \{+\infty\}: \exists u \in (\mathbb{R} \cup \{+\infty\})^{J}, u \not\equiv +\infty, T(u) \leq \lambda + u\}$$

$$= \inf\{\lambda \in \mathbb{R} \cup \{+\infty\}: \exists u \in (\mathbb{R} \cup \{+\infty\})^{J}, u \not\equiv +\infty, T(u) = \lambda + u\}.$$

In particular $\chi(\mathcal{T}) \equiv \lambda \in \mathbb{R}$ iff the nonlinear eigenproblem

$$T(u) = \lambda + u$$

has a solution $(\lambda, u) \in \mathbb{R} \times \mathbb{R}^J$.

The existence of a polynomial time algorithm to solve mean payoff games is an open problem since 1988, but but there exist practically fast methods (value/policy iteration algorithms).

For a Shapley operator $T: (\mathbb{R} \cup \{+\infty\})^J \to (\mathbb{R} \cup \{+\infty\})^J$, define the Krasnoselskii-Mann damped Shapley operator T_{KM} by $T_{\text{KM}}(u) = \frac{u+T(u)}{2}$ for all $u \in (\mathbb{R} \cup \{+\infty\})^J$. Then $\chi(T_{\text{KM}}) = \frac{\chi(T)}{2}$

We propose the following value iteration algorithm.

Value iteration algorithm

Algorithm 1: Value iteration algorithm with widening.

```
input: T a Shapley operator from (\mathbb{R} \cup \{+\infty\})^J to (\mathbb{R} \cup \{+\infty\})^J
             \varepsilon > 0 the approximation error for comparisons
             N^* a timeout on the number of iterations which guarantees the existence of a solution whenever reached
   output: Decides the feasibility of the system y \leq T(y) in \mathbb{R}^J
   initialization
   \mu := 0 \in \mathbb{R}^J
  v := 0 \in \mathbb{R}^J
  N := 0
5 repeat
             /* Value iteration step */
          v := u \wedge T(u)
           N := N + 1
           /* Widening step */
        I := \{i : v_i \ge -\varepsilon + u_i\}
9
           \hat{u} := (\hat{u}_i) \in (\mathbb{R} \cup \{+\infty\})^m \text{ with } \begin{cases} \hat{u}_i = +\infty & \text{if } i \in I \\ \hat{u}_i = u_i & \text{otherwise} \end{cases}
             \hat{\mathbf{v}} := T(\hat{\mathbf{u}})
   until v \ge -\varepsilon + u or v \ll -\varepsilon + u or \hat{v} \ll -\varepsilon + \hat{u} or \min_{i \in I} (u_i) < -(|J| - 1)W or N \ge N^*
   if v \ll -\varepsilon + u or \hat{v} \ll -\varepsilon + \hat{u} or \min_{i \in J} (u_i) < -(|J|-1)W then
             return "Unfeasible"
             return "Feasible"
```

Value iteration algorithm

Correction and termination of the value iteration algorithm

Algorithm 1 applied to the Krasnoselskii-Mann damped Shapley operator $T_{\rm KM}$ correctly decides (in exact arithmetic) the feasibility of a tropical linear system with integer coefficients in $N^* = \mathcal{O}(|J|^2W)$ iterations for $\varepsilon < \frac{1}{\min(|J|,|J|)}$, where W is an upper bound on the maximal non $-\infty$ coefficients of A and B.

- Algorithm 1 is also correct and terminates in approximate arithmetics for sufficiently small approximation errors.
- Since the cost of each evaluation of the operator T is pseudo-polynomial, Algorithm 1 is in pseudo-polynomial complexity.
- To be compared with policy iteration algorithms.

Let $f^\pm=(f_1^\pm,\ldots,f_k^\pm)$ be two collections of tropical polynomials and let $d=\max_{1\leq i\leq k}\deg(f_i^\pm)$ and $W=\max_{1\leq i\leq k}\|f_i^\pm\|_\infty$, and for $\epsilon\in\{\pm 1\}^n$, denote by $\epsilon\mathbb{R}^n_{\geq 0}$ the orthant $\{x\in\mathbb{R}^n:\epsilon_jx_j\geq 0 \text{ for all }1\leq j\leq n\}$. Then:

Short model property

- The vertices of every polyhedral complex $\{x \in \mathbb{R}^n : f_i^+(x) \ge f_i^-(x)\} \cap \epsilon \mathbb{R}^n_{\ge 0}$ are included in a $\|\cdot\|_{\infty}$ -ball of radius $2n(2d)^{n-1}W$ centered at point 0
- Moreover, if all the coefficients of the polynomials f_i^{\pm} are integer, these vertices have coordinates that are rational numbers with a denominator bounded above by $(2d)^n$.

Dichotomic search method

Solve the system

$$\begin{cases} f^+(x) \rhd f^-(x) \\ a \le x_1 \le b \end{cases}$$

for varying values of a and b.

- If $|b-a| < \frac{1}{(2d)^n}$ then one can deduce the first coordinate of a solution.
- Fix the value of x_1 and repeat with x_2, \ldots, x_n .

The dichotomic search method returns a rational solution of this system (or decides that there is none) in $\mathcal{O}(\log(n(2d)^{2n-1}W))$ calls to a weak mean payoff oracle.

Solve the system

$$f^+(\zeta, x_2, \ldots, x_n) \triangleright f^-(\zeta, x_2, \ldots, x_n)$$

for varying values of ζ .

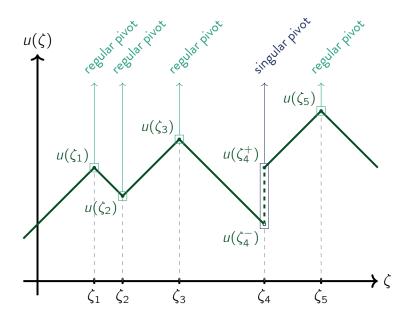
- Linearize the above system and consider the associated mean payoff game with its shapley operator \mathcal{T}_{ζ} .
- The spectral function $\phi: \zeta \mapsto \min_{j \in J} \chi_j(T_\zeta)$ is a continuous, Lipschitz, piecewise affine function.
- Computing ϕ with a pivoting algorithm yields the projection of the solution set onto the first coordinate.

• More generally, for $T_{\zeta} = A_{\zeta}^{\sharp} B_{\zeta}$ with A_{ζ} and B_{ζ} piecewise-affine in ζ , one try to find a solution of the nonlinear eigenproblem

$$T_{\zeta}(u(\zeta)) = \lambda(\zeta) + u(\zeta)$$

that is piecewise affine in ζ .

- The map $\zeta\mapsto\lambda(\zeta)$ is continuous and coincides with the spectral function. However, $\zeta\mapsto u(\zeta)$ might have some discontinuity points.
- More precisely, there is a uniqueness complex, which can be refined into a linearity complex for the nonlinear eigenvector $u(\zeta)$.
- The uniqueness of the solution to the eigenproblem relies on properties of the saturation graph of the operator T_{ζ} .



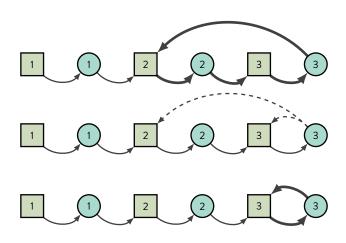
$$\operatorname{Eig}(T_{\zeta_1}) = u(\dot{\zeta}_1)$$

$$\operatorname{Eig}(T_{\zeta_2}) = u(\dot{\zeta}_2)$$

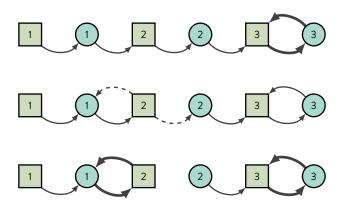
$$\operatorname{Eig}(T_{\zeta_3}) = u(\dot{\zeta}_3)$$

$$\operatorname{Eig}(T_{\zeta_4}) = u(\dot{\zeta}_4)$$

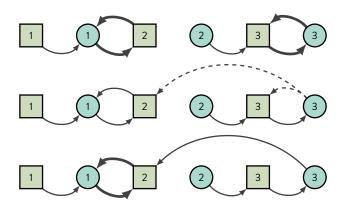
$$\operatorname{Eig}(T_{\zeta_5}) = u(\dot{\zeta}_5)$$



A regular pivoting of the saturation graph



A singular pivoting leading to the appearance of a second critical cycle



The disappearing of the second critical cycle

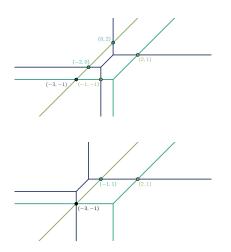
Python implementation of the algorithm available at:

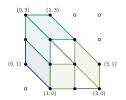
https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving

Open problems:

- Can the degree bound be improved in the Positivstellensatz (no tight example found yet)?
- Explicit complexity bounds for the path-following method (termination proven but without explicit bounds)?
- Can singular pivot generically be avoided (similar to the discriminant variety for polynomial homotopy methods)?

Thank you for your attention!





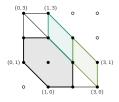
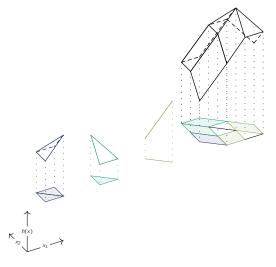
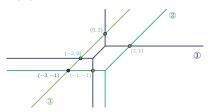


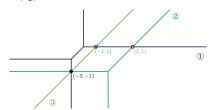
Figure: The subdivision of Q associated to (E_1) arises from the projection of the Minkowski sum of the hypographs of the lifted Newton polytopes.



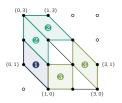
(a) The arrangement of tropical varieties of the polynomials from the system (E_1).



(c) The arrangement of tropical varieties of the polynomials from the system (E_2).



(b) The subdivision of Q associated to (E_1) .



(d) The subdivision of Q associated to (E_2) .

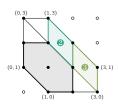
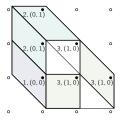


Figure: The polytope $Q+\delta$, with the integer points inside the maximal dimensional cells of the decomposition of $Q+\delta$ labelled by the row content the cell they belong to.



This configuration yields the following nonsingular square submatrix of $\mathcal{M}^{(1)}_{\mathcal{E}}$

$$\mathcal{M}_{\mathcal{E}\mathcal{E}}^{(1)} = \begin{pmatrix} (0,0) \to f_1 \\ (1,0) \to f_3 \\ (0,1) \to f_2 \\ (2,0) \to x_1 f_3 \\ (1,1) \to x_2 f_3 \\ (0,2) \to x_2 f_2 \end{pmatrix} \begin{pmatrix} 1 & x_1 & x_2 & x_1^2 & x_1 x_2 & x_2^2 \\ 1 & 2 & 1 & & 1 \\ & 2 & 0 & & \\ & & 2 & 0 & & \\ & & & 2 & 0 & \\ & & & & 2 & 0 \\ & & & & 0 & 1 \end{pmatrix}.$$

The Shapley-Folkman Lemma

Let $A_1, \ldots, A_k \subseteq \mathbb{R}^n$, and let

$$x \in \sum_{i=1}^k \operatorname{conv}(A_i)$$
.

Then there is an index set $I \subseteq \{1, ..., k\}$ with $|I| \le n$ such that

$$x \in \sum_{i \in I} \operatorname{conv}(A_i) + \sum_{i \in \{1, \dots, k\} \setminus I} A_i$$
.

Corollary: If $\sum_{i=1}^{k} \operatorname{conv}(A_i)$ has (affine) dimension d < n, then the index set I can be choosen such that $|I| \le d$.