The Nullstellensatz and Positivstellensatz for Sparse Tropical Polynomial Systems

Marianne Akian, Antoine Béreau, Stéphane Gaubert

CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, Inria
July $13^{\text {th }}, 2023$
SIAM-AG23, Eindhoven

- Given system of tropical polynomial equations or inequations, how to check the existence of a solution in \mathbb{R}^{n}.
- Given system of tropical polynomial equations or inequations, how to check the existence of a solution in \mathbb{R}^{n}.
- Main tools in the classical setting include the theory of resultants, Macaulay matrices and effective Null- and Positivstellensatz.
- Given system of tropical polynomial equations or inequations, how to check the existence of a solution in \mathbb{R}^{n}.
- Main tools in the classical setting include the theory of resultants, Macaulay matrices and effective Null- and Positivstellensatz.
- In this talk, we develop the tropical analog of the sparse Null- and Positivstellensatz, and their link with mean payoff games.

1 Tropical algebra and tropical polynomials

2 Position of the problem

3 The tropical Nullstellensatz for sparse polynomial systems

4 The tropical Positivstellensatz for sparse polynomial systems

5 Algorithmical aspects

I- Tropical algebra and tropical polynomials

- Tropical semiring $\mathbb{R}_{\infty}=(\mathbb{R} \cup\{-\infty\}, \oplus, \odot)$ with
\diamond addition $\oplus:=$ max;
\diamond multiplication $\odot:=+$;
\diamond zero element $\mathbb{D}:=-\infty$;
\diamond unit element $\mathbb{1}:=0$.
- Tropical semiring $\mathbb{R}_{\infty}=(\mathbb{R} \cup\{-\infty\}, \oplus, \odot)$ with
\diamond addition $\oplus:=$ max;
\diamond multiplication $\odot:=+$;
\diamond zero element $\mathbb{D}:=-\infty$;
\diamond unit element $\mathbb{1}:=0$.
- Satisfies the usual properties of a field except no additive inverse.
- Tropical semiring $\mathbb{R}_{\infty}=(\mathbb{R} \cup\{-\infty\}, \oplus, \odot)$ with
\diamond addition $\oplus:=$ max;
\diamond multiplication $\odot:=+$;
\diamond zero element $\mathbb{D}:=-\infty$;
\diamond unit element $\mathbb{1}:=0$.
- Satisfies the usual properties of a field except no additive inverse.
- Tropical operations can be extended to vectors and matrices with coefficients in \mathbb{R}_{∞} allowing us to perform tropical linear algebra.
- A formal tropical polynomial p in n variables is a map

such that $p_{\alpha} \neq \mathbb{D}$ for finitely many $\alpha \in \mathbb{Z}^{n}$. We denote $p=\bigoplus_{\alpha \in \mathbb{Z}^{n}} p_{\alpha} X^{\alpha}$.
- A formal tropical polynomial p in n variables is a map

such that $p_{\alpha} \neq \mathbb{D}$ for finitely many $\alpha \in \mathbb{Z}^{n}$. We denote $p=\bigoplus_{\alpha \in \mathbb{Z}^{n}} p_{\alpha} X^{\alpha}$.
- Support of $p: \operatorname{supp}(p):=\left\{\alpha \in \mathbb{Z}^{n}: p_{\alpha} \neq \mathbb{D}\right\}$
- A formal tropical polynomial p in n variables is a map

such that $p_{\alpha} \neq \mathbb{D}$ for finitely many $\alpha \in \mathbb{Z}^{n}$. We denote $p=\bigoplus_{\alpha \in \mathbb{Z}^{n}} p_{\alpha} X^{\alpha}$.
- Support of $p: \operatorname{supp}(p):=\left\{\alpha \in \mathbb{Z}^{n}: p_{\alpha} \neq \mathbb{D}\right\}$
- Polynomial function associated to p :

$$
\hat{p}:\left\{\begin{aligned}
& \mathbb{R}^{n} \longrightarrow \mathbb{R}_{\infty} \\
& x \longmapsto \\
& p(x):=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
\end{aligned}\right.
$$

with $\mathcal{A}=\operatorname{supp}(p)$

- A formal tropical polynomial p in n variables is a map

$$
\begin{aligned}
\mathbb{Z}^{n} & \longrightarrow \mathbb{R}_{\infty} \\
\alpha & \longmapsto p_{\alpha}
\end{aligned}
$$

such that $p_{\alpha} \neq \mathbb{D}$ for finitely many $\alpha \in \mathbb{Z}^{n}$. We denote $p=\bigoplus_{\alpha \in \mathbb{Z}^{n}} p_{\alpha} X^{\alpha}$.

- Support of $p: \operatorname{supp}(p):=\left\{\alpha \in \mathbb{Z}^{n}: p_{\alpha} \neq \mathbb{D}\right\}$
- Polynomial function associated to p :

$$
\hat{p}:\left\{\begin{aligned}
& \mathbb{R}^{n} \longrightarrow \mathbb{R}_{\infty} \\
& x \longmapsto \\
& p(x):=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
\end{aligned}\right.
$$

with $\mathcal{A}=\operatorname{supp}(p)$
Remark : A tropical polynomial function is a convex, piecewise affine function with integer slopes.

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

- $(0,2)$

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

- $(0,2)$ is a root of f_{1} since the maximum of $\hat{f}_{1}(0,2)=3$ is attained simultaneously by the monomials $1 x_{2}$ and $1 x_{1} x_{2}$;

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

- $(0,2)$ is a root of f_{1} since the maximum of $\hat{f}_{1}(0,2)=3$ is attained simultaneously by the monomials $1 x_{2}$ and $1 x_{1} x_{2}$;
- $(-1,1)$

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

- $(0,2)$ is a root of f_{1} since the maximum of $\hat{f}_{1}(0,2)=3$ is attained simultaneously by the monomials $1 x_{2}$ and $1 x_{1} x_{2}$;
- $(-1,1)$ is not a root of f_{1} since the maximum $\hat{f}_{1}(-1,1)=2$ is attained only by the monomial $1 x_{2}$.

The tropical hypersurface associated to a tropical polynomial p is the set of its roots.

The tropical hypersurface associated to a tropical polynomial p is the set of its roots. It coincides with the non-differentiability locus of the fonction \hat{p}.

The tropical hypersurface associated to a tropical polynomial p is the set of its roots. It coincides with the non-differentiability locus of the fonction \hat{p}.

Example : The tropical hypersurface associated to the polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$ is the following:

The tropical hypersurface associated to a tropical polynomial p is the set of its roots. It coincides with the non-differentiability locus of the fonction \hat{p}.

Example : The tropical hypersurface associated to the polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$ is the following:

The tropical hypersurface associated to a tropical polynomial p is the set of its roots. It coincides with the non-differentiability locus of the fonction \hat{p}.

Example : The tropical hypersurface associated to the polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$ is the following:

Likewise, $y \in \mathbb{R}_{\infty}^{m}$ is said to be in the tropical right null space or kernel of a $\ell \times m$ matrix $A=\left(a_{i j}\right)$ whenever for all $1 \leq i \leq \ell$, the maximum in the expression

$$
\bigoplus_{j=1}^{m} a_{i j} \odot y_{j}=\max _{1 \leq j \leq m}\left(a_{i j}+y_{j}\right)
$$

is achieved at least twice. This is also denoted as $A \odot y \nabla \mathbb{D}$.

Likewise, $y \in \mathbb{R}_{\infty}^{m}$ is said to be in the tropical right null space or kernel of a $\ell \times m$ matrix $A=\left(a_{i j}\right)$ whenever for all $1 \leq i \leq \ell$, the maximum in the expression

$$
\bigoplus_{j=1}^{m} a_{i j} \odot y_{j}=\max _{1 \leq j \leq m}\left(a_{i j}+y_{j}\right)
$$

is achieved at least twice. This is also denoted as $A \odot y \nabla \mathbb{D}$.

More on tropical geometry: D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry. Graduate Studies in Mathematics. American Mathematical Society, 2015.

II - Position of the problem

In the following, we fix a collection $f=\left(f_{1}, \ldots, f_{k}\right)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ and degrees $\left(d_{1}, \ldots, d_{k}\right)$.

In the following, we fix a collection $f=\left(f_{1}, \ldots, f_{k}\right)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ and degrees $\left(d_{1}, \ldots, d_{k}\right)$.

Problem: Decide whether there is a common tropical zero $x \in \mathbb{R}^{n}$, that is such that $f_{i}(x) \nabla \mathbb{D}$ for all $1 \leq i \leq n$.

In the following, we fix a collection $f=\left(f_{1}, \ldots, f_{k}\right)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ and degrees $\left(d_{1}, \ldots, d_{k}\right)$.

Problem: Decide whether there is a common tropical zero $x \in \mathbb{R}^{n}$, that is such that $f_{i}(x) \nabla \mathbb{D}$ for all $1 \leq i \leq n$.

In other words, we ask the question of the nonemptyness of the intersection of \mathbb{R}^{n} with the tropical prevariety given by the intersection of the tropical hypersurfaces associated to the f_{i}.

In the following, we fix a collection $f=\left(f_{1}, \ldots, f_{k}\right)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ and degrees $\left(d_{1}, \ldots, d_{k}\right)$.

Problem: Decide whether there is a common tropical zero $x \in \mathbb{R}^{n}$, that is such that $f_{i}(x) \nabla \mathbb{D}$ for all $1 \leq i \leq n$.

In other words, we ask the question of the nonemptyness of the intersection of \mathbb{R}^{n} with the tropical prevariety given by the intersection of the tropical hypersurfaces associated to the f_{i}.

Remark: The same question exists for solution in \mathbb{R}_{∞}^{n}. It reduces to the \mathbb{R}^{n} case by considering the support of the solutions.

Figure: The arrangement of tropical varieties of the polynomials from the system
$\left(E_{1}\right):\left\{\begin{array}{l}f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2} \\ f_{2}=0 \oplus 0 x_{1} \oplus 1 x_{2} \\ f_{3}=2 x_{1} \oplus 0 x_{2},\end{array}\right.$.

Figure: The arrangement of tropical varieties of the polynomials from the system
$\left(E_{2}\right):\left\{\begin{array}{l}f_{1}=1 \oplus 4 x_{1} \oplus 1 x_{2} \oplus 3 x_{1} x_{2} \\ f_{2}=0 \oplus 0 x_{1} \oplus 1 x_{2} \\ f_{3}=2 x_{1} \oplus 0 x_{2},\end{array}\right.$.

Link with classical varieties:

Link with classical varieties:

- Kapranov's theorem

Link with classical varieties:

- Kapranov's theorem
- The Fundamental Theorem of Tropical Algebraic Geometry

Link with classical varieties:

- Kapranov's theorem
- The Fundamental Theorem of Tropical Algebraic Geometry

Varied applications:

Link with classical varieties:

- Kapranov's theorem
- The Fundamental Theorem of Tropical Algebraic Geometry

Varied applications:

- celestial mechanics (Hampton, Moeckel)

Link with classical varieties:

- Kapranov's theorem
- The Fundamental Theorem of Tropical Algebraic Geometry

Varied applications:

- celestial mechanics (Hampton, Moeckel)
- max-out networks (Montúfar, Ren, Zhang)

Link with classical varieties:

- Kapranov's theorem
- The Fundamental Theorem of Tropical Algebraic Geometry

Varied applications:

- celestial mechanics (Hampton, Moeckel)
- max-out networks (Montúfar, Ren, Zhang)
- chemical reaction networks (Dickenstein, Feliu, Radulescu, Shiu)

Link with classical varieties:

- Kapranov's theorem
- The Fundamental Theorem of Tropical Algebraic Geometry

Varied applications:

- celestial mechanics (Hampton, Moeckel)
- max-out networks (Montúfar, Ren, Zhang)
- chemical reaction networks (Dickenstein, Feliu, Radulescu, Shiu)
- emergency call center (Akian, Boyer, Gaubert)

The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.

$$
\mathcal{M}=\begin{gathered}
\\
f_{1} \\
x_{1} f_{1} \\
\vdots \\
x^{\alpha} f_{i} \\
\vdots
\end{gathered}\left(\begin{array}{ccccc}
1 & x_{1} & \cdots & x^{\beta} & \cdots \\
* & * & \cdots & * & \cdots \\
* & * & \cdots & * & \cdots \\
\vdots & * & \cdots & \vdots & \\
\vdots & \vdots & & \vdots & \ddots
\end{array}\right)
$$

The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.

$$
\mathcal{M}=\begin{gathered}
\\
f_{1} \\
x_{1} f_{1} \\
\vdots \\
x^{\alpha} f_{i} \\
\vdots
\end{gathered}\left(\begin{array}{ccccc}
1 & x_{1} & \cdots & x^{\beta} & \cdots \\
* & * & \cdots & * & \cdots \\
* & * & \cdots & * & \cdots \\
\vdots & * & \cdots & \vdots & \\
\vdots & \vdots & & \vdots & \ddots
\end{array}\right)
$$

The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.

$$
\mathcal{M}=\begin{gathered}
\\
f_{1} \\
x_{1} f_{1} \\
\vdots \\
x^{\alpha} f_{i} \\
\vdots \\
\vdots
\end{gathered}\left(\begin{array}{ccccc}
* & x_{1} & \cdots & x^{\beta} & \cdots \\
* & * & \cdots & * & \cdots \\
\vdots & \vdots & \ddots & \vdots & \\
* & * & \cdots & * & \cdots \\
\vdots & \vdots & & \vdots & \ddots
\end{array}\right)
$$

The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.

$$
\mathcal{M}=\begin{gathered}
\\
f_{1} \\
x_{1} f_{1} \\
\vdots \\
x^{\alpha} f_{i} \\
\vdots
\end{gathered}\left(\begin{array}{ccccc}
* & x_{1} & \cdots & x^{\beta} & \cdots \\
* & * & \cdots & * & \cdots \\
\vdots & \vdots & \ddots & \vdots & \cdots \\
* & * & \cdots & f_{i, \beta-\alpha} & \cdots \\
\vdots & \vdots & & \vdots & \ddots
\end{array}\right)
$$

- One approch to the Nullstellensatz is a linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of the Macaulay matrix.
- One approch to the Nullstellensatz is a linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of the Macaulay matrix.
- A finite subset \mathcal{E} of \mathbb{Z}^{n} yields a (finite) submatrix $\mathcal{M}_{\mathcal{E}}$ of \mathcal{M} obtained by taking only the rows whose support is included in \mathcal{E} and the columns indexed by \mathcal{E}.
- One approch to the Nullstellensatz is a linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of the Macaulay matrix.
- A finite subset \mathcal{E} of \mathbb{Z}^{n} yields a (finite) submatrix $\mathcal{M}_{\mathcal{E}}$ of \mathcal{M} obtained by taking only the rows whose support is included in \mathcal{E} and the columns indexed by \mathcal{E}.
- For $\mathcal{E}=\left\{\alpha \in \mathbb{N}^{n}: \alpha_{1}+\cdots+\alpha_{n} \leq N\right\}$, we denote $\mathcal{M}_{N}:=\mathcal{M}_{\mathcal{E}}$.

Conjecture [Grigoriev (2012)]: There exists a finite integer N such that

$$
\begin{gathered}
\exists x \in \mathbb{R}^{n} \text { such that } f_{i}(x) \nabla \mathbb{D} \text { for } i=1, \ldots, k \\
\Longleftrightarrow \\
\exists y \in \mathbb{R}^{m} \text { such that } \mathcal{M}_{N} \odot y \nabla \mathbb{D} \text { with } m=\binom{N+n}{n} .
\end{gathered}
$$

Conjecture [Grigoriev (2012)]: There exists a finite integer N such that

$$
\begin{gathered}
\exists x \in \mathbb{R}^{n} \text { such that } f_{i}(x) \nabla \mathbb{D} \text { for } i=1, \ldots, k \\
\Longleftrightarrow \\
\exists y \in \mathbb{R}^{m} \text { such that } \mathcal{M}_{N} \odot y \nabla \mathbb{D} \text { with } m=\binom{N+n}{n} .
\end{gathered}
$$

Answer:

Conjecture [Grigoriev (2012)]: There exists a finite integer N such that

$$
\begin{gathered}
\exists x \in \mathbb{R}^{n} \text { such that } f_{i}(x) \nabla \mathbb{O} \text { for } i=1, \ldots, k \\
\Longleftrightarrow \\
\exists y \in \mathbb{R}^{m} \text { such that } \mathcal{M}_{N} \odot y \nabla \mathbb{O} \text { with } m=\binom{N+n}{n} .
\end{gathered}
$$

Answer:

- Grigoriev, Podolskii (2018): true for

$$
N=(n+2)\left(d_{1}+\cdots+d_{k}\right) .
$$

Conjecture [Grigoriev (2012)]: There exists a finite integer N such that

$$
\exists x \in \mathbb{R}^{n} \text { such that } f_{i}(x) \nabla \mathbb{O} \text { for } i=1, \ldots, k
$$

$\exists y \in \mathbb{R}^{m}$ such that $\mathcal{M}_{N} \odot y \nabla \mathbb{O}$ with $m=\binom{N+n}{n}$.

Answer:

- Grigoriev, Podolskii (2018): true for

$$
N=(n+2)\left(d_{1}+\cdots+d_{k}\right)
$$

- Akian, B., Gaubert (2023): true for

$$
N=d_{1}+\cdots+d_{k}-1
$$

(and even $N=d_{1}+\cdots+d_{k}-n$ in most cases)

Conjecture [Grigoriev (2012)]: There exists a finite integer N such that

$$
\exists x \in \mathbb{R}^{n} \text { such that } f_{i}(x) \nabla \mathbb{D} \text { for } i=1, \ldots, k
$$

$\exists y \in \mathbb{R}^{m}$ such that $\mathcal{M}_{N} \odot y \nabla \mathbb{D}$ with $m=\binom{N+n}{n}$.

Answer:

- Grigoriev, Podolskii (2018): true for

$$
N=(n+2)\left(d_{1}+\cdots+d_{k}\right) .
$$

- Akian, B., Gaubert (2023): true for

$$
N=d_{1}+\cdots+d_{k}-1
$$

(and even $N=d_{1}+\cdots+d_{k}-n$ in most cases) + adapted approch for the case of sparse polynomials.

III - The tropical Nullstellensatz for sparse polynomial systems

This work improves on Grigoriev and Podolskii's result by taking into account the sparse structure of the polynomials, and connects the tropical Nullstellensatz with classical elimination theory. In particular, it relies on a construction by Canny and Emiris (1993) and Sturmfels (1994).

This work improves on Grigoriev and Podolskii's result by taking into account the sparse structure of the polynomials, and connects the tropical Nullstellensatz with classical elimination theory. In particular, it relies on a construction by Canny and Emiris (1993) and Sturmfels (1994).

This results in an improved truncation degree (we even recover the classical Macaulay bound whenever $k=n+1$) and allows us to deal better with sparse polynomials.

- For $1 \leq i \leq k, Q_{i}:=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ is the Newton polytope of f_{i}.
- For $1 \leq i \leq k, Q_{i}:=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ is the Newton polytope of f_{i}.

Example: For systems $\left(E_{1}\right)$ and $\left(E_{2}\right)$, one has

$$
\begin{aligned}
\operatorname{supp}\left(f_{1}\right) & =\{(0,0),(1,0),(0,1),(1,1)\} \\
\operatorname{supp}\left(f_{2}\right) & =\{(0,0),(1,0),(0,1)\} \\
\operatorname{supp}\left(f_{3}\right) & =\{(1,0),(0,1)\}
\end{aligned}
$$

The Newton polytopes associated to both system $\left(E_{1}\right)$ and system $\left(E_{2}\right)$ and their Minkowski sum are as follow.

- Canny-Emiris set associated to $f: \mathcal{E}=(Q+\delta) \cap \mathbb{Z}^{n}$ with δ a generic vector in the linear space directing the affine hull of Q.
- Canny-Emiris set associated to $f: \mathcal{E}=(Q+\delta) \cap \mathbb{Z}^{n}$ with δ a generic vector in the linear space directing the affine hull of Q.

Example: Considering again the systems $\left(E_{1}\right)$ and $\left(E_{2}\right)$, for

$$
\delta=(-1+\varepsilon,-1+\varepsilon)
$$

with $\varepsilon>0$ sufficiently small, we obtain the Canny-Emiris set

$$
\mathcal{E}:=(Q+\delta) \cap \mathbb{Z}^{n}=\{(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)\}
$$

corresponding to the set of monomials $\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\}$.

Figure: The polytope $Q+\delta$ with $\delta=(-0.9,-0.9)$.

Tools for the proof of the result

- The upper hull of the lifted support $\left\{\left(\alpha, f_{i, \alpha}\right): \alpha \in \mathcal{A}_{i}\right\}$ is the graph of a function h_{i} with support Q_{i}.

Tools for the proof of the result

- The upper hull of the lifted support $\left\{\left(\alpha, f_{i, \alpha}\right): \alpha \in \mathcal{A}_{i}\right\}$ is the graph of a function h_{i} with support Q_{i}.
- If $h:=h_{1} \square \cdots \square h_{k}$ where \square denotes the sup-convolution, then $\operatorname{hypo}(h)=\operatorname{hypo}\left(h_{1}\right)+\cdots+\operatorname{hypo}\left(h_{k}\right)$ and moreover the supports of h is $Q=Q_{1}+\cdots+Q_{k}$.

Tools for the proof of the result

- The upper hull of the lifted support $\left\{\left(\alpha, f_{i, \alpha}\right): \alpha \in \mathcal{A}_{i}\right\}$ is the graph of a function h_{i} with support Q_{i}.
- If $h:=h_{1} \square \cdots \square h_{k}$ where \square denotes the sup-convolution, then $\operatorname{hypo}(h)=\operatorname{hypo}\left(h_{1}\right)+\cdots+\operatorname{hypo}\left(h_{k}\right)$ and moreover the supports of h is $Q=Q_{1}+\cdots+Q_{k}$.
- The projection of hypo(h) onto Q yields a coherent mixed subdivision of Q.

Tools for the proof of the result

Figure: The subdivision of Q associated to $\left(E_{1}\right)$ arises from the projection of the Minkowski sum of the hypographs of the h_{i}.

Tools for the proof of the result

(a) The arrangement of tropical varieties of the polynomials from the system (E_{1}).

(c) The arrangement of tropical varieties of the polynomials from the system $\left(E_{2}\right)$.

(b) The subdivision of Q associated to $\left(E_{1}\right)$.

(d) The subdivision of Q associated to $\left(E_{2}\right)$.

Nullstellensatz for Sparse Tropical Polynomial Systems

The system $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^{n}$ iff there exists a vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ in the tropical right null space of the submatrix $\mathcal{M}_{\mathcal{E}^{\prime}}$ of \mathcal{M}, where \mathcal{E}^{\prime} is any subset of \mathbb{Z}^{n} containing a nonempty Canny-Emiris set \mathcal{E}.

Nullstellensatz for Sparse Tropical Polynomial Systems

The system $f \nabla \mathbb{D}$ has a solution $x \in \mathbb{R}^{n}$ iff there exists a vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ in the tropical right null space of the submatrix $\mathcal{M}_{\mathcal{E}^{\prime}}$ of \mathcal{M}, where \mathcal{E}^{\prime} is any subset of \mathbb{Z}^{n} containing a nonempty Canny-Emiris set \mathcal{E}.

Corollary: The system $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^{n}$ if and only if the truncated Macaulay tropical linear system $\mathcal{M}_{N} \odot y \nabla \mathbb{D}$ has a solution $y \in \mathbb{R}^{m}$ for

$$
N=d_{1}+\cdots+d_{k}-1,
$$

where $d_{i}=\operatorname{deg}\left(f_{i}\right)$ for all $1 \leq i \leq k$.

Nullstellensatz for Sparse Tropical Polynomial Systems

The system $f \nabla \mathbb{Q}$ has a solution $x \in \mathbb{R}^{n}$ iff there exists a vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ in the tropical right null space of the submatrix $\mathcal{M}_{\mathcal{E}^{\prime}}$ of \mathcal{M}, where \mathcal{E}^{\prime} is any subset of \mathbb{Z}^{n} containing a nonempty Canny-Emiris set \mathcal{E}.

Corollary: The system $f \nabla \mathbb{D}$ has a solution $x \in \mathbb{R}^{n}$ if and only if the truncated Macaulay tropical linear system $\mathcal{M}_{N} \odot y \nabla \mathbb{D}$ has a solution $y \in \mathbb{R}^{m}$ for

$$
N=d_{1}+\cdots+d_{k}-1,
$$

where $d_{i}=\operatorname{deg}\left(f_{i}\right)$ for all $1 \leq i \leq k$. Moreover, if Q has full dimension, then one can take $N=d_{1}+\cdots+d_{k}-n$ in the previous statement.

Example: The matrix associated with system $\left(E_{1}\right)$ is

$$
\mathcal{M}_{\mathcal{E}}^{(1)}=\begin{array}{r}
\\
f_{1} \\
f_{2} \\
x_{1} f_{2} \\
x_{2} f_{2} \\
f_{3} \\
x_{1} f_{3} \\
x_{2} f_{3}
\end{array}\left(\begin{array}{cccccc}
1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} \\
0 & 0 & 1 & & 1 & \\
& 0 & & 0 & 1 & \\
& & 2 & 0 & & 0 \\
& & & 2 & 0 & \\
& & & & 2 & 0
\end{array}\right) .
$$

There is no finite vector in its tropical right null space and thus there is no finite solution to the equation $f \nabla \mathbb{D}$.

Example: The matrix associated with system $\left(E_{2}\right)$ is

$$
\mathcal{M}_{\mathcal{E}}^{(2)}=\begin{array}{r|ccccc}
& 1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2}
\end{array} x_{2}^{2} .
$$

The vector $y=\operatorname{ver}(-3,-1)=(0,-3,-1,-6,-4,-2)$ is finite and is in the tropical right null space of the previous matrix, hence there is a finite solution to the equation $f \nabla \mathbb{D}$, which is indeed given by $(-3,-1)$.

Ingredients of the proof

Ad $\times d$ tropical matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq d}$ is tropically diagonally dominant whenever

$$
a_{i i}>a_{i j}
$$

for all $1 \leq i, j \leq d$ such that $i \neq j$.
Lemma: If A is tropically diagonally dominant, then the only solution $y \in \mathbb{R}_{\infty}^{d}$ to the equation $A \odot y \nabla \mathbb{D}$ is $y=\mathbb{D}$.

Proof: Consider $y_{i}=\max _{1 \leq j \leq n} y_{j}$, then if $y_{i}>-\infty$ then the inequalities $a_{i i}>a_{i j}$ and $y_{i} \geq y_{j}$ imply that

$$
a_{i i}+y_{i}>a_{i j}+y_{j} \quad \text { for all } \quad 1 \leq i \neq j \leq n,
$$

thus contradicting the assumption that $A \odot y \nabla \mathbb{O}$.

Ingredients of the proof

- If $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^{n}$, then the Veronese embedding $y=\operatorname{ver}(x):=\left(x^{p}\right)_{p \in \mathcal{E}^{\prime}}$ of x is a solution to $\mathcal{M}_{\mathcal{E}^{\prime}} \odot y \nabla \mathbb{D}$.
- Otherwise we apply a construction from Canny and Emiris (1993) and Sturmfels (1994) but in a potentially non generic case to show that there is no finite vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ in the tropical right null space of $\mathcal{M}_{\mathcal{E}^{\prime}}$.

Ingredients of the proof

- If $p \in \mathcal{E}$, then $(p-\delta, h(p-\delta))$ is in the relative interior of a facet F of hypo (h), and F can be written as $F_{1}+\cdots+F_{k}$ with F_{i} faces of hypo $\left(h_{i}\right)$.
- Since f does not have a common root, at least one F_{i} is a singleton. Consider the maximal index j such that $F_{j}=\left\{a_{j}\right\}$ is a singleton. The couple $\left(j, a_{j}\right)$ is called the row content of p.
- If $p \in \mathcal{E}$ and if $\left(j, a_{j}\right)$ is its row content, then the support of the polynomial $X^{p-a_{j}} f_{j}$ is included in \mathcal{E}. This allows us to construct a square submatrix $\mathcal{M}_{\mathcal{E}}=\left(m_{p p^{\prime}}\right)_{\left(p, p^{\prime}\right) \in \mathcal{E} \times \mathcal{E}}$ of $\mathcal{M}_{\mathcal{E}}$.

Ingredients of the proof

- The matrix $\widetilde{\mathcal{M}}_{\mathcal{E} \mathcal{E}}=\left(\widetilde{m}_{p p^{\prime}}\right)_{\left(p, p^{\prime}\right) \in \mathcal{E} \times \mathcal{E}}$ obtained by setting $\widetilde{m}_{p p^{\prime}}=m_{p p^{\prime}}-h\left(p^{\prime}-\delta\right)$ is tropically diagonally dominant.
- Therefore its tropical right null space is reduced to $\{\mathbb{D}\}$, and thus this is also the case for $\mathcal{M}_{\mathcal{E} E}$.
- Hence there does not exist $y \in \mathbb{R}^{\mathcal{E}}$ such that $\mathcal{M}_{\mathcal{E}} \odot y \nabla \mathbb{D}$.
- Finally, since $\mathcal{M}_{\mathcal{E}^{\prime}}$ can be written by block as

$$
\mathcal{M}_{\mathcal{E}^{\prime}}=\left(\begin{array}{cc}
\mathcal{E} & \mathcal{E}^{\prime} \backslash \mathcal{E} \\
\mathcal{M}_{\mathcal{E}} & \mathbb{O} \\
* & *
\end{array}\right)
$$

we deduce that there does also not exist $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ such that $\mathcal{M}_{\mathcal{E}^{\prime}} \odot y \nabla \mathbb{D}$.

Figure: The polytope $Q+\delta$, with the integer points inside the maximal dimensional cells of the decomposition of $Q+\delta$ labelled by the row content the cell they belong to.

This configuration yields the following nonsingular square submatrix of $\mathcal{M}_{\mathcal{E}}^{(1)}$

$$
\mathcal{M}_{\mathcal{E} \mathcal{E}}^{(1)}=\begin{gathered}
\\
(0,0) \rightarrow f_{1} \\
(1,0) \rightarrow f_{3} \\
(0,1) \rightarrow f_{2} \\
(2,0) \rightarrow x_{1} f_{3} \\
(1,1) \rightarrow x_{2} f_{3} \\
(0,2) \rightarrow x_{2} f_{2}
\end{gathered}\left(\begin{array}{cccccc}
1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} \\
1 & 2 & 1 & & 1 & \\
& 2 & 0 & & & \\
0 & 0 & 1 & & & \\
& & & 2 & 0 & \\
& & 0 & & 0 & 1
\end{array}\right) .
$$

IV - The tropical Positivstellensatz for sparse polynomial systems

- Let $f^{ \pm}=\left(f_{1}^{ \pm}, \ldots, f_{k}^{ \pm}\right)$be two collections of tropical polynomials.
- Let $f^{ \pm}=\left(f_{1}^{ \pm}, \ldots, f_{k}^{ \pm}\right)$be two collections of tropical polynomials.
- For $1 \leq i \leq k$, denote by $\mathcal{A}_{i}^{ \pm}$the support of $f_{i}^{ \pm}$and let $f_{i}=f_{i}^{+} \oplus f_{i}^{-}$, with support $\mathcal{A}_{i}=\mathcal{A}_{i}^{+} \cup \mathcal{A}_{i}^{-}$.
- Let $f^{ \pm}=\left(f_{1}^{ \pm}, \ldots, f_{k}^{ \pm}\right)$be two collections of tropical polynomials.
- For $1 \leq i \leq k$, denote by $\mathcal{A}_{i}^{ \pm}$the support of $f_{i}^{ \pm}$and let $f_{i}=f_{i}^{+} \oplus f_{i}^{-}$, with support $\mathcal{A}_{i}=\mathcal{A}_{i}^{+} \cup \mathcal{A}_{i}^{-}$.
- Set $\triangleright=\left(\triangleright_{1}, \ldots, \triangleright_{k}\right)$ a collection of relations, with $\triangleright_{i} \in\{\geq,=,>\}$ for $1 \leq i \leq k$.
- Let $f^{ \pm}=\left(f_{1}^{ \pm}, \ldots, f_{k}^{ \pm}\right)$be two collections of tropical polynomials.
- For $1 \leq i \leq k$, denote by $\mathcal{A}_{i}^{ \pm}$the support of $f_{i}^{ \pm}$and let $f_{i}=f_{i}^{+} \oplus f_{i}^{-}$, with support $\mathcal{A}_{i}=\mathcal{A}_{i}^{+} \cup \mathcal{A}_{i}^{-}$.
- Set $\triangleright=\left(\triangleright_{1}, \ldots, \triangleright_{k}\right)$ a collection of relations, with $\triangleright_{i} \in\{\geq,=,>\}$ for $1 \leq i \leq k$.
- We denote by $f^{+}(x) \triangleright f^{-}(x)$ the system
$\max _{\alpha \in \mathcal{A}_{i}^{+}}\left(f_{i, \alpha}^{+}+\langle\alpha, x\rangle\right) \triangleright_{i} \max _{\alpha \in \mathcal{A}_{i_{-}}}\left(f_{i, \alpha}^{-}+\langle\alpha, x\rangle\right)$ for all $1 \leq i \leq k$
of unknown $x \in \mathbb{R}_{\infty}^{n}$.
- Let $\mathcal{M}^{ \pm}$be the Macaulay matrices associated to $f^{ \pm}$- i.e. with entries $f_{i, \beta-\alpha}^{ \pm}$.
- Let $\mathcal{M}^{ \pm}$be the Macaulay matrices associated to $f^{ \pm}$- i.e. with entries $f_{i, \beta-\alpha}^{ \pm}$.
- For any subset \mathcal{E} of \mathbb{Z}^{n}, denote by $\mathcal{M}_{\mathcal{E}}^{ \pm}$the submatrices of $\mathcal{M}^{ \pm}$by taking only the row indices $(i, \alpha) \in[k] \times \mathbb{Z}^{n}$ such that the supports of the rows (i, α) of both \mathcal{M}^{+}and \mathcal{M}^{-}and $\mathcal{M}_{\mathcal{E}}^{-}$is included in \mathcal{E} and the column indices given by \mathcal{E}.
- Let $\mathcal{M}^{ \pm}$be the Macaulay matrices associated to $f^{ \pm}$- i.e. with entries $f_{i, \beta-\alpha}^{ \pm}$.
- For any subset \mathcal{E} of \mathbb{Z}^{n}, denote by $\mathcal{M}_{\mathcal{E}}^{ \pm}$the submatrices of $\mathcal{M}^{ \pm}$by taking only the row indices $(i, \alpha) \in[k] \times \mathbb{Z}^{n}$ such that the supports of the rows (i, α) of both \mathcal{M}^{+}and \mathcal{M}^{-}and $\mathcal{M}_{\mathcal{E}}^{-}$is included in \mathcal{E} and the column indices given by \mathcal{E}.
- Finally, denote by $\mathcal{M}_{\mathcal{E}}^{+} \odot y \triangleright \mathcal{M}_{\mathcal{E}}^{-} \odot y$ the following system of tropical linear inequalities:

$$
\max _{\beta \in \mathcal{E}}\left(\mathcal{M}_{(i, \alpha), \beta}^{+}+y_{\beta}\right) \triangleright \max _{\beta \in \mathcal{E}}\left(\mathcal{M}_{(i, \alpha), \beta}^{-}+y_{\beta}\right) \text { for all } 1 \leq i \leq k .
$$

Let $\widetilde{Q}=r_{1} Q_{1}+\cdots+r_{k} Q_{k}$, where $Q_{i}=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ for $i=1, \ldots, k$,

Let $\widetilde{Q}=r_{1} Q_{1}+\cdots+r_{k} Q_{k}$, where $Q_{i}=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ for $i=1, \ldots, k$, and

$$
r_{i}= \begin{cases}\min \left(\left|\mathcal{A}_{i}^{-}\right|, n+1\right) & \text { if } \triangleright_{i} \in\{\geq,>\} \\ \min \left(\max \left(\left|\mathcal{A}_{i}^{-}\right|,\left|\mathcal{A}_{i}^{+}\right|\right), n+1\right) & \text { if } \triangleright_{l} \in\{=\} .\end{cases}
$$

Let $\widetilde{Q}=r_{1} Q_{1}+\cdots+r_{k} Q_{k}$, where $Q_{i}=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ for $i=1, \ldots, k$, and

$$
r_{i}= \begin{cases}\min \left(\left|\mathcal{A}_{i}^{-}\right|, n+1\right) & \text { if } \triangleright_{i} \in\{\geq,>\} \\ \min \left(\max \left(\left|\mathcal{A}_{i}^{-}\right|,\left|\mathcal{A}_{i}^{+}\right|\right), n+1\right) & \text { if } \triangleright_{l} \in\{=\} .\end{cases}
$$

We now call Canny-Emiris subsets of \mathbb{Z}^{n} associated to the pair of collections (f^{+}, f^{-}) any set \mathcal{E} of the form

$$
\mathcal{E}:=(\widetilde{Q}+\delta) \cap \mathbb{Z}^{n}
$$

where δ is a generic vector in $V+\mathbb{Z}^{n}$, with V the direction of the affine hull of \widetilde{Q}.

Main ingredient of the proof

The Shapley-Folkman Lemma

Let $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{n}$, and let

$$
x \in \sum_{i=1}^{k} \operatorname{conv}\left(A_{i}\right)
$$

Then there is an index set $I \subseteq\{1, \ldots, k\}$ with $|I| \leq n$ such that

$$
x \in \sum_{i \in I} \operatorname{conv}\left(A_{i}\right)+\sum_{i \in\{1, \ldots, k\} \backslash I} A_{i}
$$

Main ingredient of the proof

The Shapley-Folkman Lemma

Let $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{n}$, and let

$$
x \in \sum_{i=1}^{k} \operatorname{conv}\left(A_{i}\right)
$$

Then there is an index set $I \subseteq\{1, \ldots, k\}$ with $|I| \leq n$ such that

$$
x \in \sum_{i \in I} \operatorname{conv}\left(A_{i}\right)+\sum_{i \in\{1, \ldots, k\} \backslash I} A_{i}
$$

Corollary: If $\sum_{i=1}^{k} \operatorname{conv}\left(A_{i}\right)$ has (affine) dimension $d<n$, then the index set $/$ can be choosen such that $|I| \leq d$.

Tropical Positivstellensatz

There exists a solution $x \in \mathbb{R}^{n}$ to the system $f^{+}(x) \triangleright f^{-}(x)$ if and only if there exists a vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ satisfying $\mathcal{M}_{\mathcal{E}^{\prime}}^{+} \odot y \triangleright \mathcal{M}_{\mathcal{E}^{\prime}}^{-} \odot y$, where \mathcal{E}^{\prime} is any subset of \mathbb{Z}^{n} containing a nonempty Canny-Emiris subset \mathcal{E} of \mathbb{Z}^{n} associated to the pair $\left(f^{+}, f^{-}\right)$.

Corollary: Let $f_{0}^{ \pm}, \ldots, f_{k}^{ \pm}$be a collection of pairs of tropical polynomials. Then, the following implication holds for all $x \in \mathbb{R}^{n}$

$$
\left(\forall 1 \leq i \leq k, f_{i}^{+}(x) \geq f_{i}^{-}(x)\right) \quad \Longrightarrow \quad f_{0}^{+}(x) \geq f_{0}^{-}(x)
$$

iff the Macaulay linearization $\mathcal{M}_{\mathcal{E}^{\prime}}^{+} \odot y \triangleright \mathcal{M}_{\mathcal{E}^{\prime}}^{-} \odot y$ associated to the relations $f_{i}^{+}(x) \geq f_{i}^{-}(x)$ for $i=1, \leq \ldots, \leq k$ and $f_{0}^{+}(x)<f_{0}^{-}(x)$, where \mathcal{E}^{\prime} is as above, has no finite solution y.

V-Algorithmical aspects

Mean payoff games (See Gillette (1957),

Mean payoff games (See Gillette (1957),
Gurvich, Karzanov, Khachiyan (1988),

Mean payoff games (See Gillette (1957),

Gurvich, Karzanov, Khachiyan (1988), Zwick, Patterson (1996)):

Mean payoff games (See Gillette (1957),

Gurvich, Karzanov, Khachiyan (1988), Zwick, Patterson (1996)):

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;

Mean payoff games (See Gillette (1957),

Gurvich, Karzanov, Khachiyan (1988), Zwick, Patterson (1996)):

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max:

Mean payoff games (See Gillette (1957),

Gurvich, Karzanov, Khachiyan (1988), Zwick, Patterson (1996)):

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i, j) is an arc of G with weight $b_{i j}$ and obtains a payment of $b_{i j}$ from player Min,

Mean payoff games (See Gillette (1957),

Gurvich, Karzanov, Khachiyan (1988), Zwick, Patterson (1996)):

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i, j) is an arc of G with weight $b_{i j}$ and obtains a payment of $b_{i j}$ from player Min, then player Min from state $j \in J$, chooses the next state $k \in I$ along an arc (k, j) with weight $a_{k j}$, and receives in turn a payment of $a_{k j}$ from player Max ;

Mean payoff games (See Gillette (1957),

Gurvich, Karzanov, Khachiyan (1988), Zwick, Patterson (1996)):

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i, j) is an arc of G with weight $b_{i j}$ and obtains a payment of $b_{i j}$ from player Min, then player Min from state $j \in J$, chooses the next state $k \in I$ along an arc (k, j) with weight $a_{k j}$, and receives in turn a payment of $a_{k j}$ from player Max;
- the winner is the player who gets the highest average payment per turn;

Gurvich, Karzanov, Khachiyan (1988), Zwick, Patterson (1996)):

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i, j) is an arc of G with weight $b_{i j}$ and obtains a payment of $b_{i j}$ from player Min, then player Min from state $j \in J$, chooses the next state $k \in I$ along an arc (k, j) with weight $a_{k j}$, and receives in turn a payment of $a_{k j}$ from player Max;
- the winner is the player who gets the highest average payment per turn;
- $\operatorname{set} A=\left(a_{i j}\right)_{(i, j) \in I \times J}$ et $B=\left(b_{i j}\right)_{(i, j) \in I \times J}$.

Example : Let G be the following graph:

Example : Let G be the following graph:

$$
\text { One has } A=\left(\begin{array}{cc}
2 & -\infty \\
8 & -\infty \\
-\infty & 0
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
1 & -\infty \\
-3 & -12 \\
-9 & 5
\end{array}\right)
$$

Theorem [Akian, Gaubert, Guterman (2012)] : For all $j \in J$, player Max has a winning positional strategy for the mean pay-off game given by the payment matrices A and B by playing the initial move j iff there exists a solution $y \in \mathbb{R}_{\infty}^{J}$ of the tropical matrix inequality $A \odot y \leq$ $B \odot y$ such that $y_{j} \neq \mathbb{O}$.

Theorem [Akian, Gaubert, Guterman (2012)] : For all $j \in J$, player Max has a winning positional strategy for the mean pay-off game given by the payment matrices A and B by playing the initial move j iff there exists a solution $y \in \mathbb{R}_{\infty}^{J}$ of the tropical matrix inequality $A \odot y \leq$ $B \odot y$ such that $y_{j} \neq \mathbb{O}$.

The winning initial moves correspond to the support of the solutions of the inequality $A \odot y \leq B \odot y$.

In the previous example,

In the previous example,

one has $A \odot x \leq B \odot x \Longleftrightarrow\left\{\begin{aligned} 2+y_{1} & \leq 1+y_{1} \\ 8+y_{1} & \leq \max \left(-3+y_{1},-12+y_{2}\right) \\ y_{2} & \leq \max \left(-9+y_{1}, 5+y_{2}\right) .\end{aligned}\right.$

In the previous example,

one has $\quad A \odot x \leq B \odot x \Longleftrightarrow\left\{\begin{aligned} 2+y_{1} & \leq 1+y_{1} \\ 8+y_{1} & \leq \max \left(-3+y_{1},-12+y_{2}\right) \\ y_{2} & \leq \max \left(-9+y_{1}, 5+y_{2}\right) .\end{aligned}\right.$

The first inequality shows that every solution $y \in \mathbb{R}_{\infty}^{2}$ must satisfy $y_{1}=\mathbb{0}$, which implies that the two other inesualities are satisfied for all values of $y_{2} \in \mathbb{R}_{\infty}$.

In the previous example,

one has $A \odot x \leq B \odot x \Longleftrightarrow\left\{\begin{aligned} 2+y_{1} & \leq 1+y_{1} \\ 8+y_{1} & \leq \max \left(-3+y_{1},-12+y_{2}\right) \\ y_{2} & \leq \max \left(-9+y_{1}, 5+y_{2}\right) .\end{aligned}\right.$

The first inequality shows that every solution $y \in \mathbb{R}_{\infty}^{2}$ must satisfy $y_{1}=\mathbb{0}$, which implies that the two other inesualities are satisfied for all values of $y_{2} \in \mathbb{R}_{\infty}$.

This translates into the fact that the move 1 is a losing move for player Max, while the move 2 is a winning move.

- Shapley operator associated to a mean payoff game

$$
T: \begin{array}{lll}
\mathbb{R} \cup\{ \pm \infty\} & \longrightarrow & \mathbb{R} \cup\{ \pm \infty\} \\
y=\left(y_{j}\right)_{j \in J} & \mapsto & \left.\left(\min _{i \in I}-a_{i k}+\left(\max _{j \in J} b_{i j}+y_{j}\right)\right)\right)_{k \in J}
\end{array}
$$

- Shapley operator associated to a mean payoff game

$$
T: \begin{array}{lll}
\mathbb{R} \cup\{ \pm \infty\} & \longrightarrow & \mathbb{R} \cup\{ \pm \infty\} \\
y=\left(y_{j}\right)_{j \in J} & \mapsto & \left.\left(\min _{i \in I}-a_{i k}+\left(\max _{j \in J} b_{i j}+y_{j}\right)\right)\right)_{k \in J}
\end{array}
$$

- value of the game: $\chi(T)=\lim _{n \rightarrow+\infty} \frac{T^{n}(0)}{n}$
- Shapley operator associated to a mean payoff game

$$
T: \begin{array}{lll}
\mathbb{R} \cup\{ \pm \infty\} & \longrightarrow & \mathbb{R} \cup\{ \pm \infty\} \\
y=\left(y_{j}\right)_{j \in J} & \mapsto & \left.\left(\min _{i \in I}-a_{i k}+\left(\max _{j \in J} b_{i j}+y_{j}\right)\right)\right)_{k \in J}
\end{array}
$$

- value of the game: $\chi(T)=\lim _{n \rightarrow+\infty} \frac{T^{n}(0)}{n}$

Corollary: $\exists y \in \mathbb{R}^{n}$ such that $A \odot y \leq B \odot y$ iff $\chi(f) \geq 0$.

- Shapley operator associated to a mean payoff game

$$
T: \begin{array}{lll}
\mathbb{R} \cup\{ \pm \infty\} & \longrightarrow & \mathbb{R} \cup\{ \pm \infty\} \\
y=\left(y_{j}\right)_{j \in J} & \mapsto & \left.\left(\min _{i \in I}-a_{i k}+\left(\max _{j \in J} b_{i j}+y_{j}\right)\right)\right)_{k \in J}
\end{array}
$$

- value of the game: $\chi(T)=\lim _{n \rightarrow+\infty} \frac{T^{n}(0)}{n}$

Corollary: $\exists y \in \mathbb{R}^{n}$ such that $A \odot y \leq B \odot y$ iff $\chi(f) \geq 0$.

- The existence of a polynomial time algorithm to solve mean payoff games is an open problem since 1988, but but there exist practically fast methods (value/policy iteration algorithms).

Value iteration algorithm

```
Algorithm 1: Value iteration algorithm with widening.
input: \(T\) a Shapley operator from \((\mathbb{R} \cup\{+\infty\})^{m}\) to
    \((\mathbb{R} \cup\{+\infty\})^{m} \varepsilon>0\) the approximation error for
    comparisons
output: Decides the feasibility of the system \(A \odot y \leq B \odot y\) in \(\mathbb{R}^{m}\)
procedure Valuelteration \((T, \varepsilon)\) :
\(u:=0 \in \mathbb{R}^{m}\)
\(v:=0 \in \mathbb{R}^{m}\)
repeat
    /* value iteration step
    */
    \(u:=v\)
    \(v:=u \wedge T(u)\)
    /* widening step
*/
    \(I:=\left\{i: v_{i} \geq-\varepsilon+u_{i}\right\}\)
    \(\tilde{u}:=\left(\tilde{u}_{i}\right) \in(\mathbb{R} \cup\{+\infty\})^{m}\) with \(\tilde{u}_{i}=+\infty\) if \(i \in I\)
                and \(\tilde{u}_{i}=u_{i}\) otherwise
    \(\tilde{v}:=T(\tilde{u})\)
until \(v \geq-\varepsilon+u\) or \(v \ll-\varepsilon+u\) or \(\tilde{v} \ll-\varepsilon+\tilde{u}\)
if \(v \ll-\varepsilon+u\) or \(\tilde{v} \ll-\varepsilon+\tilde{u}\) then
    /* No finite vector \(y\) satisfies \(T(y) \geq-\varepsilon+y\).
        */
    return "Unfeasible"
else
    /* The vector \(u\) satisfies \(T(u) \geq-\varepsilon+u . \quad * /\)
    return "Feasible"
```

For two vectors $u, v \in(\mathbb{R} \cup\{+\infty\})^{n}$, we write $v \ll u$ if for all i such that $u_{i}<+\infty$, we have $v_{i}<u_{i}$, and for $\lambda \in \mathbb{R}$, we denote $\lambda+u$ the vector with coordinates $\lambda+u_{i}$.

Notice that the time of a single iteration is proportional to the number of nonzero entries of the matrix.

Python implementation of the algorithm available at:

https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving

Python implementation of the algorithm available at:

https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving

The bottleneck resides mainly in the computation of the Minkowski sum of the Newton polytopes of the polynomials of the system.

Python implementation of the algorithm available at:

https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving

The bottleneck resides mainly in the computation of the Minkowski sum of the Newton polytopes of the polynomials of the system.

Table: Average number of columns in the Macaulay matrices in the sparse case (right) for random systems of k inequations in n variables among 100 samples, compared to the number of columns in the full case (left).

		k													
		2		3			4			5			6		
	2	45	- 35	91	-	73	153	-	128	231	-	193	325		276
	3	165	- 85	455	-	265	969	-	611	1771	-	1156	2925	-	1987
n	4	495	- 138	1820	-	651	4845	-	2079	10626	-	5044	20475	-	10418
	5	1287	- 163	6188	-	1268	20349	-	5165	53130	-	\times	118755	-	\times
	6	3003	- 154	18564	-	~1300	74613	-	\times	230230	-	\times	593775	-	\times

Table: Number of feasible instances for random systems of k inequations in n variables among 100 samples.

	k									
	2	3	4	5	6	7	8	9	10	
n	2	97	91	62	48	38	28	12	12	5
	3	100	98	97	79	74	62	48	32	17
	4	100	100	100	100	93	92	80	\times	\times
	5	100	100	100	\times	\times	\times	\times	\times	\times
	6	100	100	\times						

Table: Average runtime in seconds to solve an instance of a random system of k inequations in n variables among 100 samples.

	k									
	2	3	4	5	6	7	8	9	10	
n	2	0.04	0.16	0.67	1.58	2.91	3.73	2.43	4.55	
	3	0.08	0.71	3.82	8.80	33.45	84.87	183.26	180.58	
	4	0.74	2.95	11.54	48.47	266.95	654.06	1952.40	\times	
	5	5.09	64.94	312.66	\times	\times	\times	\times	\times	
	67.60	2427.67	\times							

Article available at:

> https://inria.hal.science/hal-04117544

Article available at:
https://inria.hal.science/hal-04117544

Incoming work:

- Faster algorithm using the policy iteration method

Article available at:
https://inria.hal.science/hal-04117544

Incoming work:

- Faster algorithm using the policy iteration method
- Tropical analog of eigenvalue methods: we can effectively recover the solution by solving a parametric mean payoff game (current work)

Article available at:
https://inria.hal.science/hal-04117544

Incoming work:

- Faster algorithm using the policy iteration method
- Tropical analog of eigenvalue methods: we can effectively recover the solution by solving a parametric mean payoff game (current work)
- Open problem: can the degree bound be improved in the Positivstellensatz (no tight example found yet)

Article available at:
https://inria.hal.science/hal-04117544

Incoming work:

- Faster algorithm using the policy iteration method
- Tropical analog of eigenvalue methods: we can effectively recover the solution by solving a parametric mean payoff game (current work)
- Open problem: can the degree bound be improved in the Positivstellensatz (no tight example found yet)

Thank you for your attention!

