
0/40

The Nullstellensatz and
Positivstellensatz for Sparse Tropical

Polynomial Systems

Antoine Béreau

CMAP (École polytechnique), IP Paris, CNRS, Inria

under the supervision of Marianne Akian and Stéphane Gaubert

March 9th, 2023



1/40

• The aim is to determine whether a given system of tropical
polynomial equations has a root in Rn.

• The main classical tools for dealing with these questions are the
theory of resultants and Macaulay matrices. In this work, we
develop the tropical analog of the latter.
• Two main concerns: find the ‘smallest’ suitable witness and be able
to deal with sparse systems.
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I - Tropical algebra and tropical polynomials
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• Tropical semiring R∞ = (R ∪ {−∞},⊕,�) with
� addition⊕ := max;
� multiplication� := +;
� zero element 0 := −∞;
� unit element 1 := 0.

• Satisfies the usual properties of a field except no additive inverse.
• Tropical operations can be extended to vectors and matrices with
coefficients in R∞ allowing us to perform tropical linear algebra.
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• A formal tropical polynomial p in n variables is a map

Zn −→ R∞
α 7−→ pα

such that pα 6= 0 for finitely many α ∈ Zn. We denote
p =

⊕
α∈Zn pαX

α.

• Support of p: supp(p) := {α ∈ Zn : pα 6= 0}
• Polynomial function associated to p:

p̂ :

{
Rn −→ R∞
x 7−→ p̂(x) := maxα∈A(pα + 〈x, α〉)

withA = supp(p)
Remark : A tropical polynomial function is a convex, affine by parts
function with integer slopes.
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Example : If pa = x2 ⊕ ax ⊕ 0 ∈ R∞[x ], then

p̂a(x) = max(2x, x + a, 0) .
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Figure: The graph of p̂a for different values of a.

� Two distinct tropical polynomials can share the same tropical
polynomial function!
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A point x ∈ Rn∞ is a root of a polynomial p whenever the maximum in
the expression

p̂(x) =
⊕
α∈A
pα � x⊙α = max

α∈A
(pα + 〈x, α〉)

is attained for at least two distinct values of α. This is denoted as
p(x) ∇ 0.

Exemple : Consider the tropical polynomial
f1 = 1⊕ 2x1 ⊕ 1x2 ⊕ 1x1x2. Then:
• (0, 2) is a root of f1 since the maximum of f̂1(0, 2) = 3 is attained
simultaneously by the monomials 1x2 and 1x1x2 ;
• (−1, 1) is not a root of f1 since the maximum f̂1(−1, 1) = 2 is
attained only by the monomial 1x2.
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The tropical hypersurface associated to a tropical polynomial p is the set
of its roots.

It coincides with the non-differentiability locus of the
fonction p̂.

Example : The tropical hypersurface associated to the polynomial
f1 = 1⊕ 2x1 ⊕ 1x2 ⊕ 1x1x2 is the following:

(−1, 0)

(0, 1)
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Likewise, y ∈ Rm is said to be in the tropical right null space or kernel
of a ℓ×m matrix A = (ai j) whenever for all 1 ≤ i ≤ ℓ, the maximum in
the expression

m⊕
j=1

ai j � yj = max
1≤j≤m

(ai j + yj)

is achieved at least twice. This is also denoted as A� y ∇ 0.
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II - Position of the problem
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In the following, we fix a collection f = (f1, . . . , fk) of k formal tropical
polynomials in n variables, with respective supportsA = (A1, . . . ,Ak)
and degrees (d1, . . . , dk).

Problem: Decide whether there is a common tropical zero x ∈ Rn, that
is such that fi(x) ∇ 0 for all 1 ≤ i ≤ n.

In other words, we ask the question of the nonemptyness of the
intersection of Rn with the tropical prevariety given by the intersection
of the tropical hypersurfaces associated to the fi .

Remark: The same question exists for solution in Rn∞. It reduces to the
Rn by considering the support of the solutions.
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Figure: The arrangement of tropical varieties of the polynomials from the system

(E1) :


f1 = 1⊕ 2x1 ⊕ 1x2 ⊕ 1x1x2
f2 = 0⊕ 0x1 ⊕ 1x2
f3 = 2x1 ⊕ 0x2 ,

.

(0, 2)

(2, 1)

(−1,−1)

(−2, 0)

(−3,−1)

¬

­

®
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Figure: The arrangement of tropical varieties of the polynomials from the system

(E2) :


f1 = 1⊕ 4x1 ⊕ 1x2 ⊕ 3x1x2
f2 = 0⊕ 0x1 ⊕ 1x2
f3 = 2x1 ⊕ 0x2 ,

.

(−1, 1) (2, 1)

(−3,−1)

¬

­

®
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• Nullstellensatz: linearization method reducing the search of a
solution of a polynomial system to the search of nonzero elements
in the kernel of a matrix.

• TheMacaulay matrix associated to f is the (infinite) matrix
M = (m(i ,α),β) indexed by ([n]× Zn)× Zn, wherem(i ,α),β
corresponds to the coefficient of Xβ in the polynomialXαfi .
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• Nullstellensatz: linearization method reducing the search of a
solution of a polynomial system to the search of nonzero elements
in the kernel of a matrix.
• TheMacaulay matrix associated to f is the (infinite) matrix
M = (m(i ,α),β) indexed by ([n]× Zn)× Zn, wherem(i ,α),β
corresponds to the coefficient of Xβ in the polynomialXαfi .
• A finite subset E of Zn yields a (finite) submatrixME ofM
obtained by taking only the rows whose support is included in E and
the columns indexed by E .
• For E = {α ∈ Nn : α1 + · · ·+ αn ≤ N}, we denote
MN :=ME .
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A tropical Nullstellensatz was established by Grigoriev and Podolskii
(2018) for full polynomials. It uses the submatrixMN of the Macaulay
matrixM obtained by truncating it to the degree
N = (n + 2)(d1 + · · ·+ dk).

More precisely, their result is the
following:

Tropical Dual Nullstellensatz [Grigoriev and Podolskii (2018)]

The polynomials of f have a common root x ∈ Rn iff there exists a vector
y ∈ Rm withm =

(
N+n
n

)
in the tropical right null space of the truncated

Macaulay matrixMN for

N = (n + 2)(d1 + · · ·+ dk) .
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This work improves on Grigoriev and Podolskii’s result by taking into
account the sparse structure of the polynomials, and connects the
tropical Nullstellensatz with classical elimination theory. In particular, it
relies on a construction by Canny and Emiris (1993) and Strumfels
(1994).

This result in an improved truncation degree and allows us to deal better
with sparse polynomials.
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• For 1 ≤ i ≤ k ,Qi := conv(Ai) is theNewton polytope of fi .

• The upper hull of the lifted support {(α, fi ,α) : α ∈ Ai} is the
graph of a function hi with supportQi .
• If h := h1 □ · · · □ hk where □ denotes the sup-convolution, then
hypo(h) = hypo(h1) + · · ·+ hypo(hk) and moreover the
supports of h isQ = Q1 + · · ·+Qk .
• The projection of hypo(h) ontoQ yields a coherent mixed
subdivision ofQ.
• Canny-Emiris set associated to f : E = (Q+ δ) ∩ Zn with δ a
generic vector in the linear space directing the affine hull ofQ.
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The Newton polytopes associated to both systems (E1) and (E2) and
their Minkowski sum are as follow.

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0) (1, 0)

(0, 1) (0, 1)

(1, 0)

Q1 Q2 Q3

(0, 1)

(1, 0)

(0, 3) (1, 3)

(3, 1)

(3, 0)

Q = Q1 +Q2 +Q3
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Figure: The subdivision ofQ associated to (E1) arises from the projection of the Minkowski sum of
the hypographs of the hi .

x1
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(a) The arrangement of tropical varieties of the polynomials from the
system (E1).

¬
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®

(b) The subdivision ofQ associated to (E1).
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·
·
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¸

(c) The arrangement of tropical varieties of the polynomials from the
system (E2).

¬

­

®

(d) The subdivision ofQ associated to (E2).

·

¸
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Example: Considering again the systems (E1) and (E2), for

δ = (−1 + ε,−1 + ε)

with ε > 0 sufficiently small, we obtain the Canny-Emiris set

E := (Q+ δ) ∩ Zn = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}

corresponding to the set of monomials {1, x1, x2, x21 , x1x2, x22}.



20/40

Figure: The polytopeQ+ δ with δ = (−0.9,−0.9).
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III - Our contribution: the tropical
Nullstellensatz and Positivstellensatz for

sparse polynomial systems

Ë - The tropical Nullstellensatz
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Nullstellensatz for Sparse Tropical Polynomial Systems

The system f ∇ 0 has a solution x ∈ Rn iff there exists a vector y ∈ RE ′

in the tropical right null space of the submatrixME ′ ofM, where E ′ is
any subset of Zn containing a nonempty Canny-Emiris set E .

Corollary: The system f ∇ 0 has a solution x ∈ Rn if and only if the
truncated Macaulay tropical linear systemMN � y ∇ 0 has a solution
y ∈ Rm for

N = d1 + · · ·+ dk − 1 ,

where di = deg(fi) for all 1 ≤ i ≤ k . Moreover, ifQ has full dimension,
then one can take N = d1 + · · ·+ dk − n in the previous statement.
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Example: The matrix associated with system (E1) is

M(1)
E =

1 x1 x2 x21 x1x2 x22



f1 1 2 1 1

f2 0 0 1

x1f2 0 0 1

x2f2 0 0 1

f3 2 0

x1f3 2 0

x2f3 2 0

.

There is no finite vector in its tropical right null space and thus there is no
finite solution to the equation f ∇ 0.
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Example: The matrix associated with system (E2) is

M(2)
E =

1 x1 x2 x21 x1x2 x22



f1 1 4 1 3

f2 0 0 1

x1f2 0 0 1

x2f2 0 0 1

f3 2 0

x1f3 2 0

x2f3 2 0

.

The vector y = ver(−3,−1) = (0,−3,−1,−6,−4,−2) is finite and
is in the tropical right null space of the previous matrix, hence there is a
finite solution to the equation f ∇ 0, which is indeed given by (−3,−1).
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Outline of the proof

A d × d tropical matrix A = (ai j)1≤i ,j≤d is tropically diagonally
dominant whenever

ai i > ai j

for all 1 ≤ i , j ≤ d such that i 6= j .

Lemma: If A is tropically diagonally dominant, then the only solution
y ∈ Rd∞ to the equation A� y ∇ 0 is y = 0.

Proof: Consider yi = max1≤j≤n yj , then if yi > −∞ then the
inequalities ai i > ai j and yi ≥ yj imply that

ai i + yi > ai j + yj for all 1 ≤ i 6= j ≤ n ,

thus contradicting the assumption that A� y ∇ 0.
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Outline of the proof

• If f ∇ 0 has a solution x ∈ Rn, then the Veronese embedding
y = ver(x) := (xp)p∈E ′ of x is a solution toME ′ � y ∇ 0.
• Otherwise we apply a construction from Canny and Emiris (1993)
and Sturmfels (1994) but in a potentially non generic case to show
that there is no finite vector y ∈ RE ′ in the tropical right null space
ofME ′ .
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Outline of the proof

• If p ∈ E , then (p − δ, h(p − δ)) is in the relative interior of a facet
F of hypo(h), and F can be written as F1 + · · ·+ Fk with Fi faces
of hypo(hi).
• Since f does not have a common root, at least one Fi is a singleton.
Consider the maximal index j such that Fj = {aj} is a singleton.
The couple (j, aj) is called the row content of p.
• If p ∈ E and if (j, aj) is its row content, then the support of the
polynomialXp−aj fj is included in E . This allows us to construct a
square submatrixMEE = (mpp′)(p,p′)∈E×E ofME .
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Outline of the proof

• The matrix M̃EE = (m̃pp′)(p,p′)∈E×E obtained by setting
m̃pp′ = mpp′ − h(p′ − δ) is tropically diagonally dominant.
• Therefore its tropical right null space is reduced to {0}, and thus
this is also the case forMEE .
• Hence there does not exist y ∈ RE such thatME � y ∇ 0.
• Finally, sinceME ′ can be written by block as

ME ′ =

E E ′ \ E( )
ME 0

∗ ∗
,

we deduce that there does also not exist y ∈ RE ′ such that
ME ′ � y ∇ 0.
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III - Our contribution: the tropical
Nullstellensatz and Positivstellensatz for

sparse polynomial systems

Ì - The tropical Positivstellensatz
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• Let f ± = (f ±1 , . . . , f
±
k ) be two collections of tropical polynomials.

• For 1 ≤ i ≤ k , denote byA±i the support of f
±
i and let

fi = f
+
i ⊕ f

−
i , with supportAi = A

+
i ∪ A

−
i .

• Set▷ = (▷1, . . . ,▷k) a collection of relations, with
▷i ∈ {≥,=, >} for 1 ≤ i ≤ k .
• We denote by f +(x)▷ f −(x) the system

max
α∈A+i

(
f +i ,α + 〈α, x〉

)
▷i max
α∈Ai−

(
f −i ,α + 〈α, x〉

)
for all 1 ≤ i ≤ k

of unknown x ∈ Rn∞.
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• LetM± be the Macaulay matrices associated to f ± — i.e. with
entries f ±i ,β−α.

• For any subset E of Zn, denote byM±
E the submatrices ofM± by

taking only the row indices (i , α) ∈ [k ]× Zn such that the
supports of the rows (i , α) of bothM+ andM− andM−

E is
included in E and the column indices given by E .
• Finally, denote byM+

E � y ▷M−
E � y the following system of

tropical linear inequalities:

max
β∈E

(
M+
(i ,α),β

+ yβ

)
▷imax
β∈E

(
M−
(i ,α),β

+ yβ

)
for all 1 ≤ i ≤ k.
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LetQ = Q1 + · · ·+Qk , whereQi = conv(Ai) for i = 1, . . . , k .

We now call Canny-Emiris subsets of Zn associated to the pair of
collections (f +, f −) any set E of the form

E := ((n + 1)Q+ δ) ∩ Zn ,

where δ is a generic vector in V + Zn, with V the direction of the affine
hull ofQ.
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Tropical Positivstellensatz

There exists a solution x ∈ Rn to the system f +(x) ▷ f −(x) if and
only if there exists a vector y ∈ RE ′ satisfyingM+

E ′ � y ▷M
−
E ′ � y ,

where E ′ is any subset of Zn containing a nonempty Canny-Emiris
subset E of Zn associated to the pair (f +, f −).

Corollary: Let f ±0 , . . . , f
±
k be a collection of pairs of tropical

polynomials. Then, the following implication holds for all x ∈ Rn(
∀1 ≤ i ≤ k, f +i (x) ≥ f

−
i (x)

)
=⇒ f +0 (x) ≥ f

−
0 (x)

iff the Macaulay linearizationM+
E ′ � y ▷M

−
E ′ � y associated to the

relations f +i (x) ≥ f
−
i (x) for i = 1,≤ . . . ,≤ k and f

+
0 (x) < f

−
0 (x),

where E ′ is as above, has no finite solution y .
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IV - Algorithmical aspects
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Mean pay-off games (see Akian, Gaubert et Guterman (2012)) :

• G = (I t J, E) a (finite) oriented weighter bipartite graph;
• game with two players Min and Max: each turn, from the current
state i ∈ I, player Max chooses a state j ∈ J such that (i , j) is an
arc of G with weight bi j and obtains a payment of bi j from player
Min, then player Min from state j ∈ J, chooses the next state
k ∈ I along an arc (k, j) with weight akj , and receives in turn a
payment of akj from player Max ;
• the winner is the player who gets the highest average payment per
turn;
• set A = (ai j)(i ,j)∈I×J et B = (bi j)(i ,j)∈I×J .
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Example : Let G be the following
graph:

1

−3

−12

5

2

8

0

2

1

3

2

1

−9

One has A =

 2 −∞
8 −∞
−∞ 0

 and B =

 1 −∞
−3 −12
−9 5

 .
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Theorem [AGG12] : For all j ∈ J, player Max has a winning positional
strategy for the mean pay-off game given by the payment matrices A
and B by playing the initial move j iff there exists a solution y ∈ RJ∞
of the tropical matrix inequality A� y ≤ B � y such that yj 6= 0.

The winning initial moves correspond to the support of the solutions of
the inequality A� y ≤ B � y .
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In the previous example,

1

−3

−12

5

2

8

0

2

1

3

2

1

−9

one has A�x ≤ B�x ⇐⇒


2 + y1 ≤ 1 + y1
8 + y1 ≤ max(−3 + y1,−12 + y2)
y2 ≤ max(−9 + y1, 5 + y2).

The first inequality shows that every solution y ∈ R2∞ must satisfy
y1 = 0, which implies that the two other inesualities are satisfied for all
values of y2 ∈ R∞.

This translates into the fact that the move 1 is a losing move for player
Max, while the move 2 is a winning move.
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The first inequality shows that every solution y ∈ R2∞ must satisfy
y1 = 0, which implies that the two other inesualities are satisfied for all
values of y2 ∈ R∞.

This translates into the fact that the move 1 is a losing move for player
Max, while the move 2 is a winning move.
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• Shapley operator associated to a mean payoff game

T :
R ∪ {±∞} −→ R ∪ {±∞}
y = (yj)j∈J 7→

(
mini∈I −aik +

(
maxj∈J bi j + yj

))
)k∈J

• value of the game: χ(T ) = limn→+∞ T n(0)
n

Corollary: ∃y ∈ Rn such that A� y ≤ B � y iff χ(f ) ≥ 0.

• Value iteration algorithm: polynomial time status is open but it is a
practically fast method.
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Value iteration algorithm
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Table: Average number of columns in the Macaulay matrix respectively in the full and sparse case
for random systems of k inequations in n variables among 10 samples.

k

2 3 4 5 6 7

n

2 24.5 - 12.9 44.2 - 26.2 63.4 - 42.3 124.9 - 80.5 162.6 - 110.4 238.5 - 149.5
3 75.3 - 28.0 251.8 - 74.0 491.1 - 203.3 802.9 - 343.6 1276.0 - 624.6 1902.4 - 948.1
4 248.5 - 39.0 604.8 - 90.8 1728.3 - 421.7 2481.7 - 649.2 6481.1 - 1666.3 12542.4 - 4034.1
5 704.4 - 46.9 2184.7 - 87.8 5195.4 - 571.7 13731.3 - 1700.5 32362.5 - 4261.9 ×
6 1380.6 - 53.2 5726.7 - 114.5 × × × ×
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Incoming work:
• Effective implementation (work in progress)

• Obtain a verifiable certificate for the existence of a solution
• Check if the degree bound is tight in the two-sided case (no
counter-example found yet)
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Thank you for your attention!
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