The Nullstellensatz and Positivstellensatz for Sparse Tropical Polynomial Systems

Antoine Béreau

CMAP (École polytechnique), IP Paris, CNRS, Inria

under the supervision of Marianne Akian and Stéphane Gaubert

March 9 ${ }^{\text {th }}, 2023$

- The aim is to determine whether a given system of tropical polynomial equations has a root in \mathbb{R}^{n}.
- The aim is to determine whether a given system of tropical polynomial equations has a root in \mathbb{R}^{n}.
- The main classical tools for dealing with these questions are the theory of resultants and Macaulay matrices. In this work, we develop the tropical analog of the latter.
- The aim is to determine whether a given system of tropical polynomial equations has a root in \mathbb{R}^{n}.
- The main classical tools for dealing with these questions are the theory of resultants and Macaulay matrices. In this work, we develop the tropical analog of the latter.
- Two main concerns: find the 'smallest' suitable witness and be able to deal with sparse systems.

1 Tropical algebra and tropical polynomials
2. Position of the problem

3 Our contribution: the tropical Nullstellensatz and Positivstellensatz for sparse polynomial systems

- Contextualisation of the result
- The tropical Nullstellensatz
- The tropical Positivstellensatz

4 Algorithmical aspects

I- Tropical algebra and tropical polynomials

- Tropical semiring $\mathbb{R}_{\infty}=(\mathbb{R} \cup\{-\infty\}, \oplus, \odot)$ with
\diamond addition $\oplus:=$ max;
\diamond multiplication $\odot:=+$;
\diamond zero element $\mathbb{D}:=-\infty$;
\diamond unit element $\mathbb{1}:=0$.
- Tropical semiring $\mathbb{R}_{\infty}=(\mathbb{R} \cup\{-\infty\}, \oplus, \odot)$ with
\diamond addition $\oplus:=$ max;
\diamond multiplication $\odot:=+$;
\diamond zero element $\mathbb{D}:=-\infty$;
\diamond unit element $\mathbb{1}:=0$.
- Satisfies the usual properties of a field except no additive inverse.
- Tropical semiring $\mathbb{R}_{\infty}=(\mathbb{R} \cup\{-\infty\}, \oplus, \odot)$ with
\diamond addition $\oplus:=$ max;
\diamond multiplication $\odot:=+$;
\diamond zero element $\mathbb{D}:=-\infty$;
\diamond unit element $\mathbb{1}:=0$.
- Satisfies the usual properties of a field except no additive inverse.
- Tropical operations can be extended to vectors and matrices with coefficients in \mathbb{R}_{∞} allowing us to perform tropical linear algebra.
- A formal tropical polynomial p in n variables is a map

such that $p_{\alpha} \neq \mathbb{D}$ for finitely many $\alpha \in \mathbb{Z}^{n}$. We denote $p=\bigoplus_{\alpha \in \mathbb{Z}^{n}} p_{\alpha} X^{\alpha}$.
- A formal tropical polynomial p in n variables is a map

such that $p_{\alpha} \neq \mathbb{D}$ for finitely many $\alpha \in \mathbb{Z}^{n}$. We denote $p=\bigoplus_{\alpha \in \mathbb{Z}^{n}} p_{\alpha} X^{\alpha}$.
- Support of $p: \operatorname{supp}(p):=\left\{\alpha \in \mathbb{Z}^{n}: p_{\alpha} \neq \mathbb{D}\right\}$
- A formal tropical polynomial p in n variables is a map

such that $p_{\alpha} \neq \mathbb{D}$ for finitely many $\alpha \in \mathbb{Z}^{n}$. We denote $p=\bigoplus_{\alpha \in \mathbb{Z}^{n}} p_{\alpha} X^{\alpha}$.
- Support of $p: \operatorname{supp}(p):=\left\{\alpha \in \mathbb{Z}^{n}: p_{\alpha} \neq \mathbb{D}\right\}$
- Polynomial function associated to p :

$$
\hat{p}:\left\{\begin{aligned}
& \mathbb{R}^{n} \longrightarrow \mathbb{R}_{\infty} \\
& x \longmapsto \\
& p(x):=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
\end{aligned}\right.
$$

with $\mathcal{A}=\operatorname{supp}(p)$

- A formal tropical polynomial p in n variables is a map

$$
\begin{aligned}
\mathbb{Z}^{n} & \longrightarrow \mathbb{R}_{\infty} \\
\alpha & \longmapsto p_{\alpha}
\end{aligned}
$$

such that $p_{\alpha} \neq \mathbb{D}$ for finitely many $\alpha \in \mathbb{Z}^{n}$. We denote $p=\bigoplus_{\alpha \in \mathbb{Z}^{n}} p_{\alpha} X^{\alpha}$.

- Support of $p: \operatorname{supp}(p):=\left\{\alpha \in \mathbb{Z}^{n}: p_{\alpha} \neq \mathbb{D}\right\}$
- Polynomial function associated to p :

$$
\hat{p}:\left\{\begin{aligned}
& \mathbb{R}^{n} \longrightarrow \mathbb{R}_{\infty} \\
& x \longmapsto \\
& p(x):=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
\end{aligned}\right.
$$

with $\mathcal{A}=\operatorname{supp}(p)$
Remark : A tropical polynomial function is a convex, affine by parts function with integer slopes.

Example : If $p_{a}=x^{2} \oplus a x \oplus 0 \in \mathbb{R}_{\infty}[x]$, then

$$
\hat{p}_{a}(x)=\max (2 x, x+a, 0) .
$$

Example : If $p_{a}=x^{2} \oplus a x \oplus 0 \in \mathbb{R}_{\infty}[x]$, then

$$
\hat{p}_{a}(x)=\max (2 x, x+a, 0) .
$$

Example: If $p_{a}=x^{2} \oplus a x \oplus 0 \in \mathbb{R}_{\infty}[x]$, then

$$
\hat{p}_{a}(x)=\max (2 x, x+a, 0) .
$$

Example: If $p_{a}=x^{2} \oplus a x \oplus 0 \in \mathbb{R}_{\infty}[x]$, then

$$
\hat{p}_{a}(x)=\max (2 x, x+a, 0) .
$$

$a=0$
Figure: The graph of \hat{p}_{a} for different values of a.

Example : If $p_{a}=x^{2} \oplus a x \oplus 0 \in \mathbb{R}_{\infty}[x]$, then

$$
\hat{p}_{a}(x)=\max (2 x, x+a, 0) .
$$

$a=0$

$a=1$

Figure: The graph of \hat{p}_{a} for different values of a.

Two distinct tropical polynomials can share the same tropical polynomial function!

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

- $(0,2)$

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

- $(0,2)$ is a root of f_{1} since the maximum of $\hat{f}_{1}(0,2)=3$ is attained simultaneously by the monomials $1 x_{2}$ and $1 x_{1} x_{2}$;

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

- $(0,2)$ is a root of f_{1} since the maximum of $\hat{f}_{1}(0,2)=3$ is attained simultaneously by the monomials $1 x_{2}$ and $1 x_{1} x_{2}$;
- $(-1,1)$

A point $x \in \mathbb{R}_{\infty}^{n}$ is a root of a polynomial p whenever the maximum in the expression

$$
\hat{p}(x)=\bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha}=\max _{\alpha \in \mathcal{A}}\left(p_{\alpha}+\langle x, \alpha\rangle\right)
$$

is attained for at least two distinct values of α. This is denoted as $p(x) \nabla \mathbb{D}$.

Exemple : Consider the tropical polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$. Then:

- $(0,2)$ is a root of f_{1} since the maximum of $\hat{f}_{1}(0,2)=3$ is attained simultaneously by the monomials $1 x_{2}$ and $1 x_{1} x_{2}$;
- $(-1,1)$ is not a root of f_{1} since the maximum $\hat{f}_{1}(-1,1)=2$ is attained only by the monomial $1 x_{2}$.

The tropical hypersurface associated to a tropical polynomial p is the set of its roots.

The tropical hypersurface associated to a tropical polynomial p is the set of its roots. It coincides with the non-differentiability locus of the fonction \hat{p}.

The tropical hypersurface associated to a tropical polynomial p is the set of its roots. It coincides with the non-differentiability locus of the fonction \hat{p}.

Example : The tropical hypersurface associated to the polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$ is the following:

The tropical hypersurface associated to a tropical polynomial p is the set of its roots. It coincides with the non-differentiability locus of the fonction \hat{p}.

Example : The tropical hypersurface associated to the polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$ is the following:

The tropical hypersurface associated to a tropical polynomial p is the set of its roots. It coincides with the non-differentiability locus of the fonction \hat{p}.

Example : The tropical hypersurface associated to the polynomial $f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2}$ is the following:

Likewise, $y \in \mathbb{R}^{m}$ is said to be in the tropical right null space or kernel of a $\ell \times m$ matrix $A=\left(a_{i j}\right)$ whenever for all $1 \leq i \leq \ell$, the maximum in the expression

$$
\bigoplus_{j=1}^{m} a_{i j} \odot y_{j}=\max _{1 \leq j \leq m}\left(a_{i j}+y_{j}\right)
$$

is achieved at least twice. This is also denoted as $A \odot y \nabla \mathbb{D}$.

II - Position of the problem

In the following, we fix a collection $f=\left(f_{1}, \ldots, f_{k}\right)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ and degrees $\left(d_{1}, \ldots, d_{k}\right)$.

In the following, we fix a collection $f=\left(f_{1}, \ldots, f_{k}\right)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ and degrees $\left(d_{1}, \ldots, d_{k}\right)$.

Problem: Decide whether there is a common tropical zero $x \in \mathbb{R}^{n}$, that is such that $f_{i}(x) \nabla \mathbb{D}$ for all $1 \leq i \leq n$.

In the following, we fix a collection $f=\left(f_{1}, \ldots, f_{k}\right)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ and degrees $\left(d_{1}, \ldots, d_{k}\right)$.

Problem: Decide whether there is a common tropical zero $x \in \mathbb{R}^{n}$, that is such that $f_{i}(x) \nabla \mathbb{D}$ for all $1 \leq i \leq n$.

In other words, we ask the question of the nonemptyness of the intersection of \mathbb{R}^{n} with the tropical prevariety given by the intersection of the tropical hypersurfaces associated to the f_{i}.

In the following, we fix a collection $f=\left(f_{1}, \ldots, f_{k}\right)$ of k formal tropical polynomials in n variables, with respective supports $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ and degrees $\left(d_{1}, \ldots, d_{k}\right)$.

Problem: Decide whether there is a common tropical zero $x \in \mathbb{R}^{n}$, that is such that $f_{i}(x) \nabla \mathbb{D}$ for all $1 \leq i \leq n$.

In other words, we ask the question of the nonemptyness of the intersection of \mathbb{R}^{n} with the tropical prevariety given by the intersection of the tropical hypersurfaces associated to the f_{i}.

Remark: The same question exists for solution in \mathbb{R}_{∞}^{n}. It reduces to the \mathbb{R}^{n} by considering the support of the solutions.

Figure: The arrangement of tropical varieties of the polynomials from the system
$\left(E_{1}\right):\left\{\begin{array}{l}f_{1}=1 \oplus 2 x_{1} \oplus 1 x_{2} \oplus 1 x_{1} x_{2} \\ f_{2}=0 \oplus 0 x_{1} \oplus 1 x_{2} \\ f_{3}=2 x_{1} \oplus 0 x_{2},\end{array}\right.$.

Figure: The arrangement of tropical varieties of the polynomials from the system
$\left(E_{2}\right):\left\{\begin{array}{l}f_{1}=1 \oplus 4 x_{1} \oplus 1 x_{2} \oplus 3 x_{1} x_{2} \\ f_{2}=0 \oplus 0 x_{1} \oplus 1 x_{2} \\ f_{3}=2 x_{1} \oplus 0 x_{2},\end{array}\right.$.

- Nullstellensatz: linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of a matrix.
- Nullstellensatz: linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of a matrix.
- The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.
- Nullstellensatz: linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of a matrix.
- The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.

$$
\mathcal{M}=\begin{gathered}
\\
f_{1} \\
x_{1} f_{1} \\
\vdots \\
x^{\alpha} f_{i} \\
\vdots
\end{gathered}\left(\begin{array}{ccccc}
1 & x_{1} & \cdots & x^{\beta} & \cdots \\
* & * & \cdots & * & \cdots \\
* & * & \cdots & * & \cdots \\
\vdots & \vdots & \ddots & \vdots & \\
* & \vdots & & \cdots & * \\
\cdots
\end{array}\right)
$$

- Nullstellensatz: linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of a matrix.
- The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.

$$
\mathcal{M}=\begin{gathered}
\\
f_{1} \\
x_{1} f_{1} \\
\vdots \\
x^{\alpha} f_{i} \\
\vdots
\end{gathered}\left(\begin{array}{ccccc}
1 & x_{1} & \cdots & x^{\beta} & \cdots \\
* & * & \cdots & * & \cdots \\
* & * & \cdots & * & \cdots \\
\vdots & \vdots & \ddots & \vdots & \\
\vdots & \vdots & & \vdots & \ddots
\end{array}\right)
$$

- Nullstellensatz: linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of a matrix.
- The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.

$$
\mathcal{M}=\begin{gathered}
\\
f_{1} \\
x_{1} f_{1} \\
\vdots \\
x^{\alpha} f_{i} \\
\vdots
\end{gathered}\left(\begin{array}{ccccc}
1 & x_{1} & \cdots & x^{\beta} & \cdots \\
* & * & \cdots & * & \cdots \\
\vdots & * & \cdots & * & \cdots \\
* & * & \cdots & \vdots & \\
\vdots & \vdots & & \vdots & \ddots
\end{array}\right)
$$

- Nullstellensatz: linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of a matrix.
- The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.

$$
\mathcal{M}=\begin{gathered}
\\
f_{1} \\
x_{1} f_{1} \\
\vdots \\
x^{\alpha} f_{i} \\
\vdots
\end{gathered}\left(\begin{array}{ccccc}
* & x_{1} & \cdots & x^{\beta} & \cdots \\
* & * & \cdots & * & \cdots \\
\vdots & \vdots & \ddots & \vdots & \\
* & * & \cdots & f_{i, \beta-\alpha} & \cdots \\
\vdots & \vdots & & \vdots & \ddots
\end{array}\right)
$$

- Nullstellensatz: linearization method reducing the search of a solution of a polynomial system to the search of nonzero elements in the kernel of a matrix.
- The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M}=\left(m_{(i, \alpha), \beta}\right)$ indexed by $\left([n] \times \mathbb{Z}^{n}\right) \times \mathbb{Z}^{n}$, where $m_{(i, \alpha), \beta}$ corresponds to the coefficient of X^{β} in the polynomial $X^{\alpha} f_{i}$.
- A finite subset \mathcal{E} of \mathbb{Z}^{n} yields a (finite) submatrix $\mathcal{M}_{\mathcal{E}}$ of \mathcal{M} obtained by taking only the rows whose support is included in \mathcal{E} and the columns indexed by \mathcal{E}.
- For $\mathcal{E}=\left\{\alpha \in \mathbb{N}^{n}: \alpha_{1}+\cdots+\alpha_{n} \leq N\right\}$, we denote $\mathcal{M}_{N}:=\mathcal{M}_{\mathcal{E}}$.

A tropical Nullstellensatz was established by Grigoriev and Podolskii (2018) for full polynomials. It uses the submatrix \mathcal{M}_{N} of the Macaulay matrix \mathcal{M} obtained by truncating it to the degree $N=(n+2)\left(d_{1}+\cdots+d_{k}\right)$.

A tropical Nullstellensatz was established by Grigoriev and Podolskii (2018) for full polynomials. It uses the submatrix \mathcal{M}_{N} of the Macaulay matrix \mathcal{M} obtained by truncating it to the degree $N=(n+2)\left(d_{1}+\cdots+d_{k}\right)$. More precisely, their result is the following:

Tropical Dual Nullstellensatz [Grigoriev and Podolskii (2018)]

The polynomials of f have a common root $x \in \mathbb{R}^{n}$ iff there exists a vector $y \in \mathbb{R}^{m}$ with $m=\binom{N+n}{n}$ in the tropical right null space of the truncated Macaulay matrix \mathcal{M}_{N} for

$$
N=(n+2)\left(d_{1}+\cdots+d_{k}\right) .
$$

III - Our contribution: the tropical Nullstellensatz and Positivstellensatz for sparse polynomial systems

III - Our contribution: the tropical Nullstellensatz and Positivstellensatz for sparse polynomial systems

(1) - Contextualisation of the result

This work improves on Grigoriev and Podolskii's result by taking into account the sparse structure of the polynomials, and connects the tropical Nullstellensatz with classical elimination theory. In particular, it relies on a construction by Canny and Emiris (1993) and Strumfels (1994).

This work improves on Grigoriev and Podolskii's result by taking into account the sparse structure of the polynomials, and connects the tropical Nullstellensatz with classical elimination theory. In particular, it relies on a construction by Canny and Emiris (1993) and Strumfels (1994).

This result in an improved truncation degree and allows us to deal better with sparse polynomials.

- For $1 \leq i \leq k, Q_{i}:=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ is the Newton polytope of f_{i}.
- For $1 \leq i \leq k, Q_{i}:=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ is the Newton polytope of f_{i}.
- The upper hull of the lifted support $\left\{\left(\alpha, f_{i, \alpha}\right): \alpha \in \mathcal{A}_{i}\right\}$ is the graph of a function h_{i} with support Q_{i}.
- For $1 \leq i \leq k, Q_{i}:=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ is the Newton polytope of f_{i}.
- The upper hull of the lifted support $\left\{\left(\alpha, f_{i, \alpha}\right): \alpha \in \mathcal{A}_{i}\right\}$ is the graph of a function h_{i} with support Q_{i}.
- If $h:=h_{1} \square \cdots \square h_{k}$ where \square denotes the sup-convolution, then $\operatorname{hypo}(h)=\operatorname{hypo}\left(h_{1}\right)+\cdots+\operatorname{hypo}\left(h_{k}\right)$ and moreover the supports of h is $Q=Q_{1}+\cdots+Q_{k}$.
- For $1 \leq i \leq k, Q_{i}:=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ is the Newton polytope of f_{i}.
- The upper hull of the lifted support $\left\{\left(\alpha, f_{i, \alpha}\right): \alpha \in \mathcal{A}_{i}\right\}$ is the graph of a function h_{i} with support Q_{i}.
- If $h:=h_{1} \square \cdots \square h_{k}$ where \square denotes the sup-convolution, then $\operatorname{hypo}(h)=\operatorname{hypo}\left(h_{1}\right)+\cdots+\operatorname{hypo}\left(h_{k}\right)$ and moreover the supports of h is $Q=Q_{1}+\cdots+Q_{k}$.
- The projection of hypo(h) onto Q yields a coherent mixed subdivision of Q.
- For $1 \leq i \leq k, Q_{i}:=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ is the Newton polytope of f_{i}.
- The upper hull of the lifted support $\left\{\left(\alpha, f_{i, \alpha}\right): \alpha \in \mathcal{A}_{i}\right\}$ is the graph of a function h_{i} with support Q_{i}.
- If $h:=h_{1} \square \cdots \square h_{k}$ where \square denotes the sup-convolution, then $\operatorname{hypo}(h)=\operatorname{hypo}\left(h_{1}\right)+\cdots+\operatorname{hypo}\left(h_{k}\right)$ and moreover the supports of h is $Q=Q_{1}+\cdots+Q_{k}$.
- The projection of hypo(h) onto Q yields a coherent mixed subdivision of Q.
- Canny-Emiris set associated to $f: \mathcal{E}=(Q+\delta) \cap \mathbb{Z}^{n}$ with δ a generic vector in the linear space directing the affine hull of Q.

The Newton polytopes associated to both systems $\left(E_{1}\right)$ and $\left(E_{2}\right)$ and their Minkowski sum are as follow.

Figure: The subdivision of Q associated to $\left(E_{1}\right)$ arises from the projection of the Minkowski sum of the hypographs of the h_{i}.

(a) The arrangement of tropical varieties of the polynomials from the system (E_{1}).

(c) The arrangement of tropical varieties of the polynomials from the system (E_{2}).

(b) The subdivision of Q associated to $\left(E_{1}\right)$.

(d) The subdivision of Q associated to $\left(E_{2}\right)$.

Example: Considering again the systems $\left(E_{1}\right)$ and $\left(E_{2}\right)$, for

$$
\delta=(-1+\varepsilon,-1+\varepsilon)
$$

with $\varepsilon>0$ sufficiently small, we obtain the Canny-Emiris set

$$
\mathcal{E}:=(Q+\delta) \cap \mathbb{Z}^{n}=\{(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)\}
$$

corresponding to the set of monomials $\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\}$.

Figure: The polytope $Q+\delta$ with $\delta=(-0.9,-0.9)$.

III - Our contribution: the tropical Nullstellensatz and Positivstellensatz for sparse polynomial systems

(2) - The tropical Nullstellensatz

Nullstellensatz for Sparse Tropical Polynomial Systems

The system $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^{n}$ iff there exists a vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ in the tropical right null space of the submatrix $\mathcal{M}_{\mathcal{E}^{\prime}}$ of \mathcal{M}, where \mathcal{E}^{\prime} is any subset of \mathbb{Z}^{n} containing a nonempty Canny-Emiris set \mathcal{E}.

Nullstellensatz for Sparse Tropical Polynomial Systems

The system $f \nabla \mathbb{D}$ has a solution $x \in \mathbb{R}^{n}$ iff there exists a vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ in the tropical right null space of the submatrix $\mathcal{M}_{\mathcal{E}^{\prime}}$ of \mathcal{M}, where \mathcal{E}^{\prime} is any subset of \mathbb{Z}^{n} containing a nonempty Canny-Emiris set \mathcal{E}.

Corollary: The system $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^{n}$ if and only if the truncated Macaulay tropical linear system $\mathcal{M}_{N} \odot y \nabla \mathbb{D}$ has a solution $y \in \mathbb{R}^{m}$ for

$$
N=d_{1}+\cdots+d_{k}-1,
$$

where $d_{i}=\operatorname{deg}\left(f_{i}\right)$ for all $1 \leq i \leq k$.

Nullstellensatz for Sparse Tropical Polynomial Systems

The system $f \nabla \mathbb{Q}$ has a solution $x \in \mathbb{R}^{n}$ iff there exists a vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ in the tropical right null space of the submatrix $\mathcal{M}_{\mathcal{E}^{\prime}}$ of \mathcal{M}, where \mathcal{E}^{\prime} is any subset of \mathbb{Z}^{n} containing a nonempty Canny-Emiris set \mathcal{E}.

Corollary: The system $f \nabla \mathbb{D}$ has a solution $x \in \mathbb{R}^{n}$ if and only if the truncated Macaulay tropical linear system $\mathcal{M}_{N} \odot y \nabla \mathbb{D}$ has a solution $y \in \mathbb{R}^{m}$ for

$$
N=d_{1}+\cdots+d_{k}-1,
$$

where $d_{i}=\operatorname{deg}\left(f_{i}\right)$ for all $1 \leq i \leq k$. Moreover, if Q has full dimension, then one can take $N=d_{1}+\cdots+d_{k}-n$ in the previous statement.

Example: The matrix associated with system $\left(E_{1}\right)$ is

$$
\mathcal{M}_{\mathcal{E}}^{(1)}=\begin{array}{r}
\\
f_{1} \\
f_{2} \\
x_{1} f_{2} \\
x_{2} f_{2} \\
f_{3} \\
x_{1} f_{3} \\
x_{2} f_{3}
\end{array}\left(\begin{array}{cccccc}
1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} \\
0 & 0 & 1 & & 1 & \\
& 0 & & 0 & 1 & \\
& & 2 & 0 & & 0 \\
& & & 2 & 0 & \\
& & & & 2 & 0
\end{array}\right) .
$$

There is no finite vector in its tropical right null space and thus there is no finite solution to the equation $f \nabla \mathbb{D}$.

Example: The matrix associated with system $\left(E_{2}\right)$ is

$$
\mathcal{M}_{\mathcal{E}}^{(2)}=\begin{array}{r|ccccc}
& 1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2}
\end{array} x_{2}^{2} .
$$

The vector $y=\operatorname{ver}(-3,-1)=(0,-3,-1,-6,-4,-2)$ is finite and is in the tropical right null space of the previous matrix, hence there is a finite solution to the equation $f \nabla \mathbb{D}$, which is indeed given by $(-3,-1)$.

Outline of the proof
A $d \times d$ tropical matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq d}$ is tropically diagonally dominant whenever

$$
a_{i i}>a_{i j}
$$

for all $1 \leq i, j \leq d$ such that $i \neq j$.
Lemma: If A is tropically diagonally dominant, then the only solution $y \in \mathbb{R}_{\infty}^{d}$ to the equation $A \odot y \nabla \mathbb{D}$ is $y=\mathbb{D}$.

Proof: Consider $y_{i}=\max _{1 \leq j \leq n} y_{j}$, then if $y_{i}>-\infty$ then the inequalities $a_{i i}>a_{i j}$ and $y_{i} \geq y_{j}$ imply that

$$
a_{i i}+y_{i}>a_{i j}+y_{j} \quad \text { for all } \quad 1 \leq i \neq j \leq n,
$$

thus contradicting the assumption that $A \odot y \nabla \mathbb{D}$.

Outline of the proof

- If $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^{n}$, then the Veronese embedding $y=\operatorname{ver}(x):=\left(x^{p}\right)_{p \in \mathcal{E}^{\prime}}$ of x is a solution to $\mathcal{M}_{\mathcal{E}^{\prime}} \odot y \nabla \mathbb{D}$.
- Otherwise we apply a construction from Canny and Emiris (1993) and Sturmfels (1994) but in a potentially non generic case to show that there is no finite vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ in the tropical right null space of $\mathcal{M}_{\mathcal{E}^{\prime}}$.

Outline of the proof

- If $p \in \mathcal{E}$, then $(p-\delta, h(p-\delta))$ is in the relative interior of a facet F of hypo (h), and F can be written as $F_{1}+\cdots+F_{k}$ with F_{i} faces of hypo $\left(h_{i}\right)$.
- Since f does not have a common root, at least one F_{i} is a singleton. Consider the maximal index j such that $F_{j}=\left\{a_{j}\right\}$ is a singleton. The couple $\left(j, a_{j}\right)$ is called the row content of p.
- If $p \in \mathcal{E}$ and if $\left(j, a_{j}\right)$ is its row content, then the support of the polynomial $X^{p-a_{j}} f_{j}$ is included in \mathcal{E}. This allows us to construct a square submatrix $\mathcal{M}_{\mathcal{E} \mathcal{E}}=\left(m_{p p^{\prime}}\right)_{\left(p, p^{\prime}\right) \in \mathcal{E} \times \mathcal{E}}$ of $\mathcal{M}_{\mathcal{E}}$.

Outline of the proof

- The matrix $\widetilde{\mathcal{M}}_{\mathcal{E E}}=\left(\widetilde{m}_{p p^{\prime}}\right)_{\left(p, p^{\prime}\right) \in \mathcal{E} \times \mathcal{E}}$ obtained by setting $\widetilde{m}_{p p^{\prime}}=m_{p p^{\prime}}-h\left(p^{\prime}-\delta\right)$ is tropically diagonally dominant.
- Therefore its tropical right null space is reduced to $\{\mathbb{D}\}$, and thus this is also the case for $\mathcal{M e E}_{\mathcal{E}}$.
- Hence there does not exist $y \in \mathbb{R}^{\mathcal{E}}$ such that $\mathcal{M}_{\mathcal{E}} \odot y \nabla \mathbb{O}$.
- Finally, since $\mathcal{M}_{\mathcal{E}^{\prime}}$ can be written by block as

$$
\mathcal{M}_{\mathcal{E}^{\prime}}=\left(\begin{array}{cc}
\mathcal{E} & \mathcal{E}^{\prime} \backslash \mathcal{E} \\
\mathcal{M}_{\mathcal{E}} & \mathbb{O} \\
* & *
\end{array}\right)
$$

we deduce that there does also not exist $y \in \mathbb{R}^{\mathcal{E}}$ such that $\mathcal{M}_{\mathcal{E}^{\prime}} \odot y \nabla \mathbb{D}$.

III - Our contribution: the tropical Nullstellensatz and Positivstellensatz for sparse polynomial systems

(3) The tropical Positivstellensatz

- Let $f^{ \pm}=\left(f_{1}^{ \pm}, \ldots, f_{k}^{ \pm}\right)$be two collections of tropical polynomials.
- Let $f^{ \pm}=\left(f_{1}^{ \pm}, \ldots, f_{k}^{ \pm}\right)$be two collections of tropical polynomials.
- For $1 \leq i \leq k$, denote by $\mathcal{A}_{i}^{ \pm}$the support of $f_{i}^{ \pm}$and let $f_{i}=f_{i}^{+} \oplus f_{i}^{-}$, with support $\mathcal{A}_{i}=\mathcal{A}_{i}^{+} \cup \mathcal{A}_{i}^{-}$.
- Let $f^{ \pm}=\left(f_{1}^{ \pm}, \ldots, f_{k}^{ \pm}\right)$be two collections of tropical polynomials.
- For $1 \leq i \leq k$, denote by $\mathcal{A}_{i}^{ \pm}$the support of $f_{i}^{ \pm}$and let $f_{i}=f_{i}^{+} \oplus f_{i}^{-}$, with support $\mathcal{A}_{i}=\mathcal{A}_{i}^{+} \cup \mathcal{A}_{i}^{-}$.
- Set $\triangleright=\left(\triangleright_{1}, \ldots, \triangleright_{k}\right)$ a collection of relations, with $\triangleright_{i} \in\{\geq,=,>\}$ for $1 \leq i \leq k$.
- Let $f^{ \pm}=\left(f_{1}^{ \pm}, \ldots, f_{k}^{ \pm}\right)$be two collections of tropical polynomials.
- For $1 \leq i \leq k$, denote by $\mathcal{A}_{i}^{ \pm}$the support of $f_{i}^{ \pm}$and let $f_{i}=f_{i}^{+} \oplus f_{i}^{-}$, with support $\mathcal{A}_{i}=\mathcal{A}_{i}^{+} \cup \mathcal{A}_{i}^{-}$.
- Set $\triangleright=\left(\triangleright_{1}, \ldots, \triangleright_{k}\right)$ a collection of relations, with $\triangleright_{i} \in\{\geq,=,>\}$ for $1 \leq i \leq k$.
- We denote by $f^{+}(x) \triangleright f^{-}(x)$ the system
$\max _{\alpha \in \mathcal{A}_{i}^{+}}\left(f_{i, \alpha}^{+}+\langle\alpha, x\rangle\right) \triangleright_{i} \max _{\alpha \in \mathcal{A}_{i_{-}}}\left(f_{i, \alpha}^{-}+\langle\alpha, x\rangle\right)$ for all $1 \leq i \leq k$
of unknown $x \in \mathbb{R}_{\infty}^{n}$.
- Let $\mathcal{M}^{ \pm}$be the Macaulay matrices associated to $f^{ \pm}$- i.e. with entries $f_{i, \beta-\alpha}^{ \pm}$.
- Let $\mathcal{M}^{ \pm}$be the Macaulay matrices associated to $f^{ \pm}$- i.e. with entries $f_{i, \beta-\alpha}^{ \pm}$.
- For any subset \mathcal{E} of \mathbb{Z}^{n}, denote by $\mathcal{M}_{\mathcal{E}}^{ \pm}$the submatrices of $\mathcal{M}^{ \pm}$by taking only the row indices $(i, \alpha) \in[k] \times \mathbb{Z}^{n}$ such that the supports of the rows (i, α) of both \mathcal{M}^{+}and \mathcal{M}^{-}and $\mathcal{M}_{\mathcal{E}}^{-}$is included in \mathcal{E} and the column indices given by \mathcal{E}.
- Let $\mathcal{M}^{ \pm}$be the Macaulay matrices associated to $f^{ \pm}$- i.e. with entries $f_{i, \beta-\alpha}^{ \pm}$.
- For any subset \mathcal{E} of \mathbb{Z}^{n}, denote by $\mathcal{M}_{\mathcal{E}}^{ \pm}$the submatrices of $\mathcal{M}^{ \pm}$by taking only the row indices $(i, \alpha) \in[k] \times \mathbb{Z}^{n}$ such that the supports of the rows (i, α) of both \mathcal{M}^{+}and \mathcal{M}^{-}and $\mathcal{M}_{\mathcal{E}}^{-}$is included in \mathcal{E} and the column indices given by \mathcal{E}.
- Finally, denote by $\mathcal{M}_{\mathcal{E}}^{+} \odot y \triangleright \mathcal{M}_{\mathcal{E}}^{-} \odot y$ the following system of tropical linear inequalities:

$$
\max _{\beta \in \mathcal{E}}\left(\mathcal{M}_{(i, \alpha), \beta}^{+}+y_{\beta}\right) \triangleright \max _{\beta \in \mathcal{E}}\left(\mathcal{M}_{(i, \alpha), \beta}^{-}+y_{\beta}\right) \text { for all } 1 \leq i \leq k .
$$

Let $Q=Q_{1}+\cdots+Q_{k}$, where $Q_{i}=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ for $i=1, \ldots, k$.

Let $Q=Q_{1}+\cdots+Q_{k}$, where $Q_{i}=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ for $i=1, \ldots, k$.
We now call Canny-Emiris subsets of \mathbb{Z}^{n} associated to the pair of collections (f^{+}, f^{-}) any set \mathcal{E} of the form

$$
\mathcal{E}:=((n+1) Q+\delta) \cap \mathbb{Z}^{n}
$$

where δ is a generic vector in $V+\mathbb{Z}^{n}$, with V the direction of the affine hull of Q.

Tropical Positivstellensatz

There exists a solution $x \in \mathbb{R}^{n}$ to the system $f^{+}(x) \triangleright f^{-}(x)$ if and only if there exists a vector $y \in \mathbb{R}^{\mathcal{E}^{\prime}}$ satisfying $\mathcal{M}_{\mathcal{E}^{\prime}}^{+} \odot y \triangleright \mathcal{M}_{\mathcal{E}^{\prime}}^{-} \odot y$, where \mathcal{E}^{\prime} is any subset of \mathbb{Z}^{n} containing a nonempty Canny-Emiris subset \mathcal{E} of \mathbb{Z}^{n} associated to the pair $\left(f^{+}, f^{-}\right)$.

Corollary: Let $f_{0}^{ \pm}, \ldots, f_{k}^{ \pm}$be a collection of pairs of tropical polynomials. Then, the following implication holds for all $x \in \mathbb{R}^{n}$

$$
\left(\forall 1 \leq i \leq k, f_{i}^{+}(x) \geq f_{i}^{-}(x)\right) \quad \Longrightarrow \quad f_{0}^{+}(x) \geq f_{0}^{-}(x)
$$

iff the Macaulay linearization $\mathcal{M}_{\mathcal{E}^{\prime}}^{+} \odot y \triangleright \mathcal{M}_{\mathcal{E}^{\prime}}^{-} \odot y$ associated to the relations $f_{i}^{+}(x) \geq f_{i}^{-}(x)$ for $i=1, \leq \ldots, \leq k$ and $f_{0}^{+}(x)<f_{0}^{-}(x)$, where \mathcal{E}^{\prime} is as above, has no finite solution y.

IV - Algorithmical aspects

Mean pay-off games (see Akian, Gaubert et Guterman (2012)) :

Mean pay-off games (see Akian, Gaubert et Guterman (2012)) :

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;

Mean pay-off games (see Akian, Gaubert et Guterman (2012)) :

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max:

Mean pay-off games (see Akian, Gaubert et Guterman (2012)) :

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i, j) is an arc of G with weight $b_{i j}$ and obtains a payment of $b_{i j}$ from player Min,

Mean pay-off games (see Akian, Gaubert et Guterman (2012)) :

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i, j) is an arc of G with weight $b_{i j}$ and obtains a payment of $b_{i j}$ from player Min, then player Min from state $j \in J$, chooses the next state $k \in I$ along an $\operatorname{arc}(k, j)$ with weight $a_{k j}$, and receives in turn a payment of $a_{k j}$ from player Max ;

Mean pay-off games (see Akian, Gaubert et Guterman (2012)) :

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i, j) is an arc of G with weight $b_{i j}$ and obtains a payment of $b_{i j}$ from player Min, then player Min from state $j \in J$, chooses the next state $k \in I$ along an arc (k, j) with weight $a_{k j}$, and receives in turn a payment of $a_{k j}$ from player Max;
- the winner is the player who gets the highest average payment per turn;

Mean pay-off games (see Akian, Gaubert et Guterman (2012)) :

- $G=(I \sqcup J, E)$ a (finite) oriented weighter bipartite graph;
- game with two players Min and Max: each turn, from the current state $i \in I$, player Max chooses a state $j \in J$ such that (i, j) is an arc of G with weight $b_{i j}$ and obtains a payment of $b_{i j}$ from player Min, then player Min from state $j \in J$, chooses the next state $k \in I$ along an $\operatorname{arc}(k, j)$ with weight $a_{k j}$, and receives in turn a payment of $a_{k j}$ from player Max ;
- the winner is the player who gets the highest average payment per turn;
- $\operatorname{set} A=\left(a_{i j}\right)_{(i, j) \in I \times J}$ et $B=\left(b_{i j}\right)_{(i, j) \in I \times J}$.

Example : Let G be the following graph:

Example : Let G be the following graph:

$$
\text { One has } A=\left(\begin{array}{cc}
2 & -\infty \\
8 & -\infty \\
-\infty & 0
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
1 & -\infty \\
-3 & -12 \\
-9 & 5
\end{array}\right)
$$

Theorem [AGG12] : For all $j \in J$, player Max has a winning positional strategy for the mean pay-off game given by the payment matrices A and B by playing the initial move j iff there exists a solution $y \in \mathbb{R}_{\infty}^{J}$ of the tropical matrix inequality $A \odot y \leq B \odot y$ such that $y_{j} \neq \mathbb{O}$.

Theorem [AGG12] : For all $j \in J$, player Max has a winning positional strategy for the mean pay-off game given by the payment matrices A and B by playing the initial move j iff there exists a solution $y \in \mathbb{R}_{\infty}^{J}$ of the tropical matrix inequality $A \odot y \leq B \odot y$ such that $y_{j} \neq \mathbb{O}$.

The winning initial moves correspond to the support of the solutions of the inequality $A \odot y \leq B \odot y$.

In the previous example,

In the previous example,

one has $A \odot x \leq B \odot x \Longleftrightarrow\left\{\begin{aligned} 2+y_{1} & \leq 1+y_{1} \\ 8+y_{1} & \leq \max \left(-3+y_{1},-12+y_{2}\right) \\ y_{2} & \leq \max \left(-9+y_{1}, 5+y_{2}\right) .\end{aligned}\right.$

In the previous example,

one has $A \odot x \leq B \odot x \Longleftrightarrow\left\{\begin{aligned} 2+y_{1} & \leq 1+y_{1} \\ 8+y_{1} & \leq \max \left(-3+y_{1},-12+y_{2}\right) \\ y_{2} & \leq \max \left(-9+y_{1}, 5+y_{2}\right) .\end{aligned}\right.$

The first inequality shows that every solution $y \in \mathbb{R}_{\infty}^{2}$ must satisfy $y_{1}=\mathbb{0}$, which implies that the two other inesualities are satisfied for all values of $y_{2} \in \mathbb{R}_{\infty}$.

In the previous example,

one has $A \odot x \leq B \odot x \Longleftrightarrow\left\{\begin{aligned} 2+y_{1} & \leq 1+y_{1} \\ 8+y_{1} & \leq \max \left(-3+y_{1},-12+y_{2}\right) \\ y_{2} & \leq \max \left(-9+y_{1}, 5+y_{2}\right) .\end{aligned}\right.$

The first inequality shows that every solution $y \in \mathbb{R}_{\infty}^{2}$ must satisfy $y_{1}=\mathbb{0}$, which implies that the two other inesualities are satisfied for all values of $y_{2} \in \mathbb{R}_{\infty}$.

This translates into the fact that the move 1 is a losing move for player Max, while the move 2 is a winning move.

- Shapley operator associated to a mean payoff game

$$
T: \begin{array}{lll}
\mathbb{R} \cup\{ \pm \infty\} & \longrightarrow & \mathbb{R} \cup\{ \pm \infty\} \\
y=\left(y_{j}\right)_{j \in J} & \mapsto & \left.\left(\min _{i \in I}-a_{i k}+\left(\max _{j \in J} b_{i j}+y_{j}\right)\right)\right)_{k \in J}
\end{array}
$$

- Shapley operator associated to a mean payoff game

$$
T: \begin{array}{lll}
\mathbb{R} \cup\{ \pm \infty\} & \longrightarrow & \mathbb{R} \cup\{ \pm \infty\} \\
y=\left(y_{j}\right)_{j \in J} & \mapsto & \left.\left(\min _{i \in I}-a_{i k}+\left(\max _{j \in J} b_{i j}+y_{j}\right)\right)\right)_{k \in J}
\end{array}
$$

- value of the game: $\chi(T)=\lim _{n \rightarrow+\infty} \frac{T^{n}(0)}{n}$
- Shapley operator associated to a mean payoff game
$T: \begin{array}{lll}\mathbb{R} \cup\{ \pm \infty\} & \longrightarrow & \mathbb{R} \cup\{ \pm \infty\} \\ y=\left(y_{j}\right)_{j \in J} & \mapsto & \left.\left(\min _{i \in I}-a_{i k}+\left(\max _{j \in J} b_{i j}+y_{j}\right)\right)\right)_{k \in J}\end{array}$
- value of the game: $\chi(T)=\lim _{n \rightarrow+\infty} \frac{T^{n}(0)}{n}$

Corollary: $\exists y \in \mathbb{R}^{n}$ such that $A \odot y \leq B \odot y$ iff $\chi(f) \geq 0$.

- Shapley operator associated to a mean payoff game
$T: \begin{array}{lll}\mathbb{R} \cup\{ \pm \infty\} & \longrightarrow & \mathbb{R} \cup\{ \pm \infty\} \\ y=\left(y_{j}\right)_{j \in J} & \mapsto & \left.\left(\min _{i \in I}-a_{i k}+\left(\max _{j \in J} b_{i j}+y_{j}\right)\right)\right)_{k \in J}\end{array}$
- value of the game: $\chi(T)=\lim _{n \rightarrow+\infty} \frac{T^{n}(0)}{n}$

Corollary: $\exists y \in \mathbb{R}^{n}$ such that $A \odot y \leq B \odot y$ iff $\chi(f) \geq 0$.

- Value iteration algorithm: polynomial time status is open but it is a practically fast method.

Value iteration algorithm

For two vectors $u, v \in(\mathbb{R} \cup\{+\infty\})^{n}$, we write $v \ll u$ if for all i such that $u_{i}<+\infty$, we have $v_{i}<u_{i}$. Moreover, for $\lambda \in \mathbb{R}$, we denote $\lambda+u$ the vector with coordinates $\lambda+u_{i}$. Algorithm 1 exploits the

```
Algorithm 1 Value iteration algorithm with widening.
    procedure VALUEITERATION \((T)\)
        \(\triangleright T\) a Shapley operator from \((\mathbb{R} \cup\{+\infty\})^{m}\) to \((\mathbb{R} \cup\{+\infty\})^{m}\)
        \(u:=0 \in \mathbb{R}^{m}, v:=0 \in \mathbb{R}^{m}\), and \(\varepsilon \geqslant 0\).
    repeat
        \(u:=v, v:=u \wedge(u+T(u)) / 2 \triangleright\) value iteration step
        \(I:=\left\{i \mid v_{i} \geqslant-\varepsilon+u_{i}\right\}\)
        \(\tilde{u}:=\left(\tilde{u}_{i}\right) \in(\mathbb{R} \cup\{+\infty\})^{m}\) with \(\tilde{u}_{i}=+\infty\) if \(i \in I\) and \(\tilde{u}_{i}=u_{i}\)
    otherwise \(\triangleright\) widening step
        \(\tilde{v}:=T(\tilde{u})\)
    until \(v \geqslant-\varepsilon+u\) or \(v \ll-\varepsilon+u\) or \(\tilde{v} \ll-\varepsilon+\tilde{u}\)
        if \(v \ll-\varepsilon+u\) or \(\tilde{v} \ll-\varepsilon+\tilde{u}\) then return "Unfeasible"
        \(\triangleright\) There is no finite vector \(y\) such that \(-\varepsilon+y \leqslant T(y)\).
        else return \(u\)
        \(\triangleright\) We have \(T(u) \geqslant-\varepsilon+u\).
        end
    end
```

Table: Average number of columns in the Macaulay matrix respectively in the full and sparse case for random systems of k inequations in n variables among 10 samples.

	k					
		2	3	4	$53.4-42.3$	$124.9-80.5$

Incoming work:

- Effective implementation (work in progress)

Incoming work:

- Effective implementation (work in progress)
- Obtain a verifiable certificate for the existence of a solution

Incoming work:

- Effective implementation (work in progress)
- Obtain a verifiable certificate for the existence of a solution
- Check if the degree bound is tight in the two-sided case (no counter-example found yet)

Incoming work:

- Effective implementation (work in progress)
- Obtain a verifiable certificate for the existence of a solution
- Check if the degree bound is tight in the two-sided case (no counter-example found yet)

Thank you for your attention!

