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Main tools in the classical setting include the theory of resultants,
Macaulay matrices and effective Null- and Positivstellensatz.

In this talk, we develop the tropical analog of the sparse Null- and
Positivstellensatz, and their link with mean payoff games.
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Tropical semiring R = (RU {—00}, ®, ®) with
addition & := max;
multiplication ©® := +;
zero element 0 := —o0;
unit element 1 := 0.

Satisfies the usual properties of a field except no additive inverse.

Tropical operations can be extended to vectors and matrices with
coefhicients in Ry, allowing us to perform tropical linear algebra.
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A formal tropical polynomial p in 11 variables is a map

Z" — Ry
a — Po

such that py # O for finitely many o € Z". We denote
p= @an” PaX?.
Support of p: supp(p) := {a € Z" : py # 0}

Polynomial function associated to p:

. { R"” — Ry
P x> B(x) = maxeealpa + (x, @)
with A = supp(p)

Remark : A tropical polynomial function is a
function with



A point x € R7 is a root of a polynomial p whenever the maximum in
the expression
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A point x € R7 is a root of a polynomial p whenever the maximum in
the expression

p(x) QEB Poc ®© x“% = max(po + (x, @))

is attained for of a.. This is denoted as
p(x) V 0.

Exemple : Consider the tropical polynomial
L=1602x1 P 1x ® 1x1x. Then:

(0,2) is a root of f; since the maximum of £, (0, 2) = 3 is attained
simultaneously by the monomials 1x5 and 1x1x> ;

(—1,1) is not a root of f; since the maximum f,(—1,1) = 2is
attained only by the monomial 1x5.
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The tropical hypersurface associated to a tropical polynomial p is the set

of its roots. It coincides with the non-differentiability locus of the
fonction p.

Example : The tropical hypersurface associated to the polynomial
fi = 1@ 2x1 @ 1xo @ 1x1x is the following:




Likewise, y € R} is said to be in the tropical right null space or kernel
of a £ x mmatrix A = (a;;) whenever , the maximum in

the expression
m
@ a0y = lg_agxm(a,-j +j)
Jj=1
. This is also denotedas A® y V 0.



Likewise, y € R} is said to be in the tropical right null space or kernel
of a £ x mmatrix A = (a;;) whenever , the maximum in

the expression
m
@ ajj ©yj = max (ajj +Yj)
1 1<<m
J:

is . This is also denotedas A® y V 0.

D. Maclagan and B. Sturmfels. Introduction to Tropical
Geometry. Graduate Studies in Mathematics. American Mathematical Society, 2015.
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polynomials in 1 variables, with respective supports A = (Ay, ..., Ag)
and degrees (di, . . ., dy).
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In the Following, we fix a collection f = (f1, .. ., fi) of k formal tropical
polynomials in 1 variables, with respective supports A = (Ay, ..., Ag)
and degrees (di, . . ., dy).

In other words, we ask the question of the nonemptyness of the
intersection of R" with the tropical prevariety given by the intersection
of the tropical hypersurfaces associated to the f;.



In the following, we fix a collection f = (f1, ..., fx) of k formal tropical
polynomials in 11 variables, with respective supports A = (Ay, ..., Ax)
and degrees (di, ..., di).

In other words, we ask the question of the nonemptyness of the
intersection of R" with the tropical prevariety given by the intersection
of the tropical hypersurfaces associated to the f;.

Remark: The same question exists for solution in R7 . It reduces to the
R case by considering the support of the solutions.
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Figure: The arrangement of tropical varieties of the polynomials from the system

fi = 1®4x1 D 1x P 3x1x0
(EQ) : fr = 000X ®1lx
f3 = 2X1 (&) 0X2 ,

(2.1)
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Link with classical varieties:
Kapranov’s theorem

The Fundamental Theorem of Tropical Algebraic Geometry

Varied applications:
celestial mechanics (Hampton, Moeckel)
max-out networks (Montafar, Ren, Zhang)
chemical reaction networks (Dickenstein, Feliu, Radulescu, Shiu)

emergency call center (Akian, Boyer, Gaubert)



The Macaulay matrix associated to f is the (infinite) matrix
M = (m(; ) ) indexed by x 7", where m

corresponds to the coefficient of XB in the polynomial

X]. “ e XB

¥ =

f
x1f

*
* ¥
*
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One approch to the Nullstellensatz is a linearization method
reducing the search of a solution of a polynomial system to the
search of nonzero elements in the kernel of the Macaulay matrix.

A finite subset &€ of Z" yields a (finite) submatrix Mg of M

obtained by taking only the rows whose support is included in £ and
the columns indexed by £.

Foré ={ae€N":a;+- -+ a, < N}, wedenote
M/\/ Z:Mg.
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Conjecture [Grigoriev (2012)]: There exists a finite integer N such

that
dx € R" such that fi(x) VOfori=1,..., k
e
Jy € R such that My @ y V Owith m = (V") .
Answer:

Grigoriev, Podolskii (2018): true for
N=(n+2)(d1+---+dx) .

Akian, B., Gaubert (2023): true for
N=d +-+dc—1

(and even N = di + - - - + dix — nin most cases) + adapted
approch for the case of sparse polynomials.



l11 - The tropical Nullstellensatz for sparse
polynomial systems



This work improves on Grigoriev and Podolskii’s result by taking into
account the sparse structure of the polynomials, and connects the
tropical Nullstellensatz with classical elimination theory. In particular, it

relies on a construction by Canny and Emiris (1993) and Sturmfels
(1994).



This work improves on Grigoriev and Podolskii’s result by taking into
account the sparse structure of the polynomials, and connects the
tropical Nullstellensatz with classical elimination theory. In particular, it

relies on a construction by Canny and Emiris (1993) and Sturmfels
(1994).

This results in an (we even recover the
classical Macaulay bound whenever k = n + 1) and allows us to
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For1 <i <k, Qj := conv(A,)) is the Newton polytope of f;.

Example: The Newton polytopes associated to both system (£7) and
system (E2) and their Minkowski sum are as follow.

(03 (13

(01 (@@1) (01) (0.1)

AN

0.0) (L0) (0,0) (LO) ~  (LO) (10 (3.0)

Q. QR Rz Q=Q1+Q2+Q3

(3.1) -
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generic vector in the linear space directing the affine hull of Q.



Canny-Emiris set associated to f: £ = (Q +0) N Z" withd a

generic vector in the linear space directing the affine hull of Q.

Example: Considering again the systems (E7) and (E2), for
0=(-1+¢-1+¢)
with € > 0 sufficiently small, we obtain the Canny-Emiris set
E=(Q+06)NZ"={(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)}

corresponding to the set of monomials {1, x1, X2, X12, X1Xo, X22}



Figure: The polytope Q + ¢ with § = (—0.9, —0.9).
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Tools for the proof of the result

The upper hull of the lifted support {(a, fi o) : & € A;} is the
graph of a function h; with support Q;.

If h:= hyO--- 0O hy where O denotes the sup-convolution, then
hypo(h) = hypo(h1) + - - - + hypo(hy) and moreover the
supportsof his Q@ = Q1 + -+ - + Q.

The projection of hypo(h) onto Q yields a coherent mixed
subdivision of Q.



Tools for the proof of the result

Figure: The subdivision of Q associated to (E£1) arises from the projection of the Minkowski sum of
the hypographs of the h;.




Tools for the proof of the result

(a) The arrangement of tropical varieties of the polynomials from the
system (E1).

@

(0,2)

(=3.-1)

(c) The arrangement of tropical varieties of the polynomials from the
system (E2).

()]

(-1,1) 2,1)

(=3.-1)

(b) The subdivision of Q associated to (£7).

(0.3) (1.3)

(2]
) °

(©0.1) & @ @ ey

1.0 (3,0)

(d) The subdivision of Q associated to (£5).

(0,3) (1,3)

(0,1) . (3] (3.1)

(1.9) 3.0)
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in the tropical right null space of the submatrix Mg: of M, where &' is
any subset of Z" containing a nonempty Canny-Emiris set £.



Nullstellensatz for Sparse Tropical Polynomial Systems

The system f 'V O has a solution x € R" iff there exists a vector y € RE
in the tropical right null space of the submatrix Mg: of M, where &' is
any subset of Z" containing a nonempty Canny-Emiris set £.

Corollary: The system f V 0 has a solution x € R" if and only if the
truncated Macaulay tropical linear system My © y V 0 has a solution
y € R for

N=d+---+d¢e—1,

where d; = deg(f;) forall 1 < i < k. Moreover, ,
then one can take N = di + - - - + dix — nin the previous statement.



Example: The matrix associated with system (E1) is

1 x1 x X2 xxo X3

fi 1 2 1 1
fa 0 1
1) X1f2 0 0 1
M7 = xbh 0 0 1
f 2 0
X1f3 2 0
X2f3 2 0

There is no finite vector in its tropical right null space and thus there is no

finite solution to the equation f V 0.



Example: The matrix associated with system (E3) is

1 X1 xo xl2 X1X ><22
f1 1 4 1 3
> 0 1
@) x1f> 0 0 1
M= xh 0 0o 1
f3 2 0
le}, 2 0
Xzf:g 2 0

The vector y = ver(—3,—1) = (0, =3, —1, —6, —4, —2) is finite and
is in the tropical right null space of the previous matrix, hence there is a

finite solution to the equation f V 0, which is indeed given by (=3, —1).



Ingredients of the proof

A d x d tropical matrix A = (aj;)1<; j<d is tropically diagonally
dominant whenever
ajj > ajj

forall1 </,j < dsuchthati # .

Lemma: If Ais tropically diagonally dominant, then the only solution
y € Rgo to the equation A® y V 0isy = 0.

Proof: Consider y; = maxi<j<p ¥j, thenif y; > —o0 then the
inequalities a;; > a;; and y; > y; imply that

aiji+yi>aj+y forall 1<i#,;<n,

thus contradicting the assumption that A© y V 0.



Ingredients of the proof

If £ V 0 has a solution x € R", then the Veronese embedding

y = ver(x) := (xP)peg of X is a solution to Mg © y V 0.
Otherwise we apply a construction from Canny and Emiris (1993)
and Sturmfels (1994) but in a potentially non generic case to show
that there is no finite vector y € R¥ in the tropical right null space
of Mg



Ingredients of the proof

If p € & then (p— 0, h(p — 0)) is in the relative interior of a facet
F of hypo(h), and F can be written as F1 + - - - + F with F; faces
of hypo(h;).

Since f does not have a common root, at least one F; is a singleton.
Consider the maximal index j such that F; = {a;} is a singleton.
The couple (J, a;) is called the row content of p.

If p € €andif (J, a;) is its row content, then the support of the
polynomial X~ f; is included in £. This allows us to construct a

square submatrix Mgg = (Mpp ) (p,p)eexe of Me.



Ingredients of the proof

The matrix Mg = (Mpp ) (p,p)ce x e obtained by setting
Mpy = Mpy — h(p’ — §) is tropically diagonally dominant.

Therefore its tropical right null space is reduced to {0}, and thus
this is also the case for Mgg.

Hence there does not exist y € RE such that Mg ® y V 0.
Finally, since Mg/ can be written by block as

s &\€

M512<M‘€ @ ) ,
* *

we deduce that there does also not exist y € RE such that
Meg ©y V0.



Ingredients of the proof

Figure: The polytope Q + §, with the integer points inside the maximal dimensional cells of the
decomposition of Q + § labelled by the row content the cell they belong to.

2. (0, 1.)

2,0, D) \a.(1.0)

1,(0.0.) Y (1‘0.) 3‘(1,0.)

This configuration yields the following nonsingular square submatrix of

M

1 x3 x x12 X1X0 x22
(0,0) = A 1 2 1 1
(1,0) = f3 2 0
&g (2,0) = x1fs 2 0
(1,1) = xofs 2 0

(0,2) = xof2 0 0 1



IV - The tropical Positivstellensatz for sparse
polynomial systems
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For 1 </ < k, denote by A,-i the support of f,-i and let
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Let f* = (fli ..... fkj:) be two collections of tropical polynomials.
For 1 </ < k, denote by A,-i the support of f,-i and let

fi = f,-+ @ f;”, with support A; = A;’_ UA .

Set> = (>, ..., >k ) a collection of relations, with

>ie{> = >} forl <<k

We denote by f1(x) > f~(x) the system

max (F +(ax) > _max (o +{ax) forall1 </ <k

of unknown x € R7_.



Let M™ be the Macaulay matrices associated to f+ —ie with
entries f,-%_a. For any subset £ of Z", denote by MZE the
submatrices of M* by taking only the row indices

(1, o) € [k] x Z" such that the supports of the rows (/, &) of both
M™ and M~ isincluded in € and the column indices given by £.



Let M™ be the Macaulay matrices associated to f+ —ie with
entries f,-%_a. For any subset £ of Z", denote by MZE the
submatrices of M* by taking only the row indices

(1, o) € [k] x Z" such that the supports of the rows (/, &) of both
M™ and M~ isincluded in € and the column indices given by £.

Finally, denote by Mg Oy > Mg © y the following system of

tropical linear inequalities:

+ _
Bet (Mt 98)> max (MG g+ 95) forall 1< < k.



Leté =

and

Q1+ -+ + 1. Qx, where Q; = conv(A4;) fori =1

_{ min(|A7[, n+ 1) if>j e {>,>}

min(max(|A-[, [AF]), n+ 1) if>, € {=} .



Let Q = Q1 + - + . Qx, where Q; = conv(A;) fori =1,..., K,

and

[ min(JA;[,n+1) if>; e {>, >}
N { min(max(|A-[, [AF]), n+ 1) if>, € {=} .

We now call Canny-Emiris subsets of Z" associated to the pair of
collections (f*, f7) any set € of the form

£ = (§+5)mzn ,

where 0 is a generic vector in V' + Z", with V' the direction of the affine
hull of Q.



Main ingredient of the proof

The Shapley-Folkman Lemma

k
X € Zconv(A,) .
i=1

Then there is an indexset / C {1, ..., k} with |/| < nsuch that

X € Zconv(A,-) + Z A .

icl i€{1,..k}\/

Corollary: If Zf—;l conv(A;) has (affine) dimension d < n, then the
index set | can be choosen such that |/| < d.



Tropical Positivstellensatz

There exists a solution x € R” to the system f(x) > £~ (x) if and
only if there exists a vector y € RE' satisfying sz/ Qy>Mg0oy,
where £ is any subset of Z" containing a nonempty Canny-Emiris
subset £ of Z" associated to the pair (f1, f7).

Corollary: Let foi ..... fki be a collection of pairs of tropical
polynomials. Then, the following implication holds for all x € R”

(VI<i<k ff(x)>f(x)) = x> &)
iff the Macaulay linearization /\/lzf, ©y > Mg, © y associated to the

relations ;7 (x) > £, (x) fori =1,..., k and f;F (x) < fy (x), where
&' is as above, has no finite solution y.



V- Algorithmical aspects
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Mean payoff games (See Gillette (1957),
Gurvich, Karzanov, Khachiyan (1988),
Zwick, Patterson (1996)):

G = (I U J, E) a (finite) oriented weighter bipartite graph;

game with two players Min and Max: each turn, from the current
state / € /, player Max chooses a state j € J such that (/, /) is an
arc of G with weight b;; and obtains a payment of b;; from player
Min, then player Min from state j € J, chooses the next state

k € | alonganarc (k,Jj) with weight a;, and receives in turn a
payment of ay;from player Max ;

the winner is the player who gets the highest average payment per
turn;

set A= (a;;)(ijyeixs et B = (bij)(ijyerxs-



Example : Let G be the following -9
graph: 2
3
2 —00 1
One has A = 8 —oo| andB=1[-3
-0 0 -9



Theorem [Akian, Gaubert, Guterman (2012)] : For all j € J, player
Max has a winning positional strategy for the mean pay-off game given
by the payment matrices A and B by playing the iff there
exists a solution y € Ra’o of the tropical matrix inequality A © y <
B ® y such that

The winning initial moves correspond to the of the solutions of

the inequality A© y < B©y.



In the previous example, 5 _3
—12 g )
O
3 5
24y < 1+4+n
onehas AGy < BOy <= 8+y1 < max(=3+y1,—12+ y»)
Yo < max(—9+y1,5+ o).
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In the previous example, 5 _3
—12 g )
O
3 5
24y < 1+4+n
onehas AGy < BOy <= 8+y1 < max(=3+y1,—12+ y»)
Yo < max(—9+y1,5+ o).

The first inequality shows that every solution y € RZ must satisfy
v1 = 0, which implies that the two other inesualities are satisfied for all

values of y» € Reo.



1
! 2
. -9 8
In the previous example, 5 _3
—12 g )
O
3 5
24y < 1+4+n
onehas AGy < BOy <= 8+y1 < max(=3+y1,—12+ y»)
Yo < max(—9+y1,5+ o).

The first inequality shows that every solution y € RZ must satisfy
v1 = 0, which implies that the two other inesualities are satisfied for all
values of o € Ry

This translates into the fact that the move 1 is a losing move for player

Max, while the move 2 is a winning move.
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Shapley operator associated to a mean payoff game
RU{+cc} — RU{£oo}
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Shapley operator associated to a mean payoff game

- RuU{toc} — RU{£oo}
vy =Wjes — (minigs—aix + (maxjey bij + ;) ke

77(0)

value of the game: X(T) = lim; 400 —

Corollary: 3y € R"suchthat AO y < BO yiff x(f) > 0.

The existence of a polynomial time algorithm to solve mean payoff
games is an open problem since 1988, but but there exist practically
fast methods (value/policy iteration algorithms).



Value iteration algorithm
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Algorithm 1: Value iteration algorithm with widening.

input: T a Shapley operator from (R U {+00})" to
(R U {+00})™ € > 0 the approximation error for
comparisons
output: Decides the feasibility of the system A©y < BOyinR™
procedure Valuelteration(T', €):
u:=0€R"
v:=0€R"
repeat
/* value iteration step */
ui=v
v:=uAT(u)
/* widening step */
I={i:vi > —e+u}
i = (i;) € (RU {-o0})™ with ii; = +-o0ifi € |
and {; = u; otherwise
v=T(0)
untilv > —e+vorv< —e+uorV <€ —e+1ii
ifv< —e+uor? < —€+ then
/* No finite vector y satisfies T(y)> —e+y.
*/

return “Unfeasible”

else
/* The vector u satisfies T(u) > —e+u. */
return “Feasible”

For two vectors u, v € (R U {+00})", we
write v < u if for all i such that 1; < 400,
we have v; < uj, and for A € R, we denote
X + u the vector with coordinates X\ + u;.

Notice that the time of a single iteration is
proportional to the number of nonzero
entries of the matrix.



Python implementation of the algorithm available at:

https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving
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The bottleneck resides mainly in the computation of the Minkowski sum
of the Newton polytopes of the polynomials of the system.
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Python implementation of the algorithm available at:
https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving

The bottleneck resides mainly in the computation of the Minkowski sum
of the Newton polytopes of the polynomials of the system.

Table: Average number of columns in the Macaulay matrices in the sparse case (right) for random
systems of k inequations in 11 variables among 100 samples, compared to the number of columns in

the full case (left).

k
2 3 4 5 6
2| 45 - 35 Ell - 73 153 - 128 231 - 193 325 - 276
3| 165 - 85| 455 - 265 969 - en 177 - 156 2925 - 1987
n|4| 495 - 138 | 1820 - 651 4845 - 2079 | 10626 - 5044 | 20475 - 10418
51287 - 163 | 6188 - 1268 | 20349 - 5165 | 53130 - X 18755 - X
6| 3003 - 154 |18564 - ~1300 | 74613 - x 230230 - X 593775 - X



https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving

Table: Number of feasible instances for random systems of k inequations in n variables among 100

samples.
\ k
‘ 2 3 4 5 6 7 8 9 10
2 97 91 62 48 38 28 12 12 5
3 100 98 97 79 74 62 48 32 17
nl4a 100 100 100 100 93 92 80 X X
5 100 100 100 X X X X X X
[ 100 100 X X X X X X X

Table: Average runtime in seconds to solve an instance of a random system of k inequations in n

variables among 100 samples.

k
2 3 4 5 6 7 8 9 10
2| 0.04 0.16 0.67 1.58 291 3.73 2.43 4.55 2.53
3] 0.08 071 3.82 8.80 33.45 84.87 18326 180.58 154.43
n|4| 074 295 1.54 4847 26695 654.06 1952.40 X X
5| 509 6494  312.66 X X X X X X
6 67.60 | 2427.67 X X X X X X X




Incoming work:
Faster algorithm using the policy iteration method
Tropical analog of eigenvalue methods: we can effectively recover
the solution by solving a parametric mean payoff game (current
work)
Open problem: can the degree bound be improved in the
Positivstellensatz (no tight example found yet)



Thank you for your attention!
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