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• Given system of tropical polynomial equations or inequations, how
to check the existence of a solution in Rn.

• Main tools in the classical setting include the theory of resultants,
Macaulay matrices and effective Null- and Positivstellensatz.
• In this talk, we develop the tropical analog of the sparse Null- and
Positivstellensatz, and their link with mean payoff games.
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I - Tropical algebra and tropical polynomials
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• Tropical semiring R∞ = (R ∪ {−∞},⊕,�) with
� addition⊕ := max;
� multiplication� := +;
� zero element 0 := −∞;
� unit element 1 := 0.

• Satisfies the usual properties of a field except no additive inverse.
• Tropical operations can be extended to vectors and matrices with
coefficients in R∞ allowing us to perform tropical linear algebra.
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• A formal tropical polynomial p in n variables is a map

Zn −→ R∞
α 7−→ pα

such that pα 6= 0 for finitely many α ∈ Zn. We denote
p =

⊕
α∈Zn pαX

α.

• Support of p: supp(p) := {α ∈ Zn : pα 6= 0}
• Polynomial function associated to p:

p̂ :

{
Rn −→ R∞
x 7−→ p̂(x) := maxα∈A(pα + 〈x, α〉)

withA = supp(p)
Remark : A tropical polynomial function is a convex, piecewise affine
function with integer slopes.
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A point x ∈ Rn∞ is a root of a polynomial p whenever the maximum in
the expression

p̂(x) =
⊕
α∈A
pα � x⊙α = max

α∈A
(pα + 〈x, α〉)

is attained for at least two distinct values of α. This is denoted as
p(x) ∇ 0.

Exemple : Consider the tropical polynomial
f1 = 1⊕ 2x1 ⊕ 1x2 ⊕ 1x1x2. Then:
• (0, 2) is a root of f1 since the maximum of f̂1(0, 2) = 3 is attained
simultaneously by the monomials 1x2 and 1x1x2 ;
• (−1, 1) is not a root of f1 since the maximum f̂1(−1, 1) = 2 is
attained only by the monomial 1x2.
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The tropical hypersurface associated to a tropical polynomial p is the set
of its roots. It coincides with the non-differentiability locus of the
fonction p̂.

Example : The tropical hypersurface associated to the polynomial
f1 = 1⊕ 2x1 ⊕ 1x2 ⊕ 1x1x2 is the following:

(−1, 0)

(0, 1)
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Likewise, y ∈ Rm∞ is said to be in the tropical right null space or kernel
of a ℓ×m matrix A = (ai j) whenever for all 1 ≤ i ≤ ℓ, the maximum in
the expression

m⊕
j=1

ai j � yj = max
1≤j≤m

(ai j + yj)

is achieved at least twice. This is also denoted as A� y ∇ 0.

More on tropical geometry: D. Maclagan and B. Sturmfels. Introduction to Tropical
Geometry. Graduate Studies in Mathematics. American Mathematical Society, 2015.
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II - Position of the problem
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In the following, we fix a collection f = (f1, . . . , fk) of k formal tropical
polynomials in n variables, with respective supportsA = (A1, . . . ,Ak)
and degrees (d1, . . . , dk).

Problem: Decide whether there is a common tropical zero x ∈ Rn, that
is such that fi(x) ∇ 0 for all 1 ≤ i ≤ n.

In other words, we ask the question of the nonemptyness of the
intersection of Rn with the tropical prevariety given by the intersection
of the tropical hypersurfaces associated to the fi .

Remark: The same question exists for solution in Rn∞. It reduces to the
Rn case by considering the support of the solutions.
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Figure: The arrangement of tropical varieties of the polynomials from the system

(E1) :


f1 = 1⊕ 2x1 ⊕ 1x2 ⊕ 1x1x2
f2 = 0⊕ 0x1 ⊕ 1x2
f3 = 2x1 ⊕ 0x2 ,

.

(0, 2)

(2, 1)

(−1,−1)

(−2, 0)

(−3,−1)

¬



®



10/43

Figure: The arrangement of tropical varieties of the polynomials from the system

(E2) :


f1 = 1⊕ 4x1 ⊕ 1x2 ⊕ 3x1x2
f2 = 0⊕ 0x1 ⊕ 1x2
f3 = 2x1 ⊕ 0x2 ,

.

(−1, 1) (2, 1)

(−3,−1)

¬



®
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Link with classical varieties:
• Kapranov’s theorem
• The Fundamental Theorem of Tropical Algebraic Geometry

Varied applications:
• celestial mechanics (Hampton, Moeckel)
• max-out networks (Montúfar, Ren, Zhang)
• chemical reaction networks (Dickenstein, Feliu, Radulescu, Shiu)
• emergency call center (Akian, Boyer, Gaubert)
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TheMacaulay matrix associated to f is the (infinite) matrix
M = (m(i ,α),β) indexed by ([n]× Zn)× Zn, wherem(i ,α),β
corresponds to the coefficient ofXβ in the polynomialXαfi .

M =

1 x1 · · · xβ · · ·


f1 ∗ ∗ · · · ∗ · · ·
x1f1 ∗ ∗ · · · ∗ · · ·
...

...
... . . . ...

xαfi ∗ ∗ · · · f i ,β−α · · ·
...

...
...

... . . .
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• One approch to theNullstellensatz is a linearization method
reducing the search of a solution of a polynomial system to the
search of nonzero elements in the kernel of the Macaulay matrix.

• A finite subset E of Zn yields a (finite) submatrixME ofM
obtained by taking only the rows whose support is included in E and
the columns indexed by E .
• For E = {α ∈ Nn : α1 + · · ·+ αn ≤ N}, we denote
MN :=ME .
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Conjecture [Grigoriev (2012)]: There exists a finite integer N such
that

∃x ∈ Rn such that fi(x) ∇ 0 for i = 1, . . . , k
⇐⇒

∃y ∈ Rm such thatMN � y ∇ 0 withm =
(
N+n
n

)
.

Answer:
• Grigoriev, Podolskii (2018): true for

N = (n + 2)(d1 + · · ·+ dk) .

• Akian, B., Gaubert (2023): true for

N = d1 + · · ·+ dk − 1

(and even N = d1 + · · ·+ dk − n in most cases) + adapted
approch for the case of sparse polynomials.
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III - The tropical Nullstellensatz for sparse
polynomial systems
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This work improves on Grigoriev and Podolskii’s result by taking into
account the sparse structure of the polynomials, and connects the
tropical Nullstellensatz with classical elimination theory. In particular, it
relies on a construction by Canny and Emiris (1993) and Sturmfels
(1994).

This results in an improved truncation degree (we even recover the
classical Macaulay bound whenever k = n + 1) and allows us to deal
better with sparse polynomials.



15/43

This work improves on Grigoriev and Podolskii’s result by taking into
account the sparse structure of the polynomials, and connects the
tropical Nullstellensatz with classical elimination theory. In particular, it
relies on a construction by Canny and Emiris (1993) and Sturmfels
(1994).

This results in an improved truncation degree (we even recover the
classical Macaulay bound whenever k = n + 1) and allows us to deal
better with sparse polynomials.



16/43

• For 1 ≤ i ≤ k ,Qi := conv(Ai) is theNewton polytope of fi .

Example: The Newton polytopes associated to both system (E1) and
system (E2) and their Minkowski sum are as follow.

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0) (1, 0)

(0, 1) (0, 1)

(1, 0)

Q1 Q2 Q3

(0, 1)

(1, 0)

(0, 3) (1, 3)

(3, 1)

(3, 0)

Q = Q1 +Q2 +Q3
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• Canny-Emiris set associated to f : E = (Q+ δ) ∩ Zn with δ a
generic vector in the linear space directing the affine hull ofQ.

Example: Considering again the systems (E1) and (E2), for

δ = (−1 + ε,−1 + ε)

with ε > 0 sufficiently small, we obtain the Canny-Emiris set

E := (Q+ δ) ∩ Zn = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}

corresponding to the set of monomials {1, x1, x2, x21 , x1x2, x22}.
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Figure: The polytopeQ+ δ with δ = (−0.9,−0.9).

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(2, 0)
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Tools for the proof of the result

• The upper hull of the lifted support {(α, fi ,α) : α ∈ Ai} is the
graph of a function hi with supportQi .

• If h := h1 □ · · · □ hk where □ denotes the sup-convolution, then
hypo(h) = hypo(h1) + · · ·+ hypo(hk) and moreover the
supports of h isQ = Q1 + · · ·+Qk .
• The projection of hypo(h) ontoQ yields a coherent mixed
subdivision ofQ.
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Tools for the proof of the result

Figure: The subdivision ofQ associated to (E1) arises from the projection of the Minkowski sum of
the hypographs of the hi .

x1
x2

h(x)
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Tools for the proof of the result

(a) The arrangement of tropical varieties of the polynomials from the
system (E1).

(0, 2)

(2, 1)

(−1,−1)

(−2, 0)

(−3,−1)

¬



®

(b) The subdivision ofQ associated to (E1).

(0, 1)

(1, 0)

(0, 3) (1, 3)

(3, 1)

(3, 0)

¶

·

·

¸

¸

(c) The arrangement of tropical varieties of the polynomials from the
system (E2).

(−1, 1) (2, 1)

(−3,−1)

¬



®

(d) The subdivision ofQ associated to (E2).

(0, 1)

(1, 0)

(0, 3) (1, 3)

(3, 1)

(3, 0)

·

¸
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Nullstellensatz for Sparse Tropical Polynomial Systems

The system f ∇ 0 has a solution x ∈ Rn iff there exists a vector y ∈ RE ′

in the tropical right null space of the submatrixME ′ ofM, where E ′ is
any subset of Zn containing a nonempty Canny-Emiris set E .

Corollary: The system f ∇ 0 has a solution x ∈ Rn if and only if the
truncated Macaulay tropical linear systemMN � y ∇ 0 has a solution
y ∈ Rm for

N = d1 + · · ·+ dk − 1 ,

where di = deg(fi) for all 1 ≤ i ≤ k . Moreover, ifQ has full dimension,
then one can take N = d1 + · · ·+ dk − n in the previous statement.
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Example: The matrix associated with system (E1) is

M(1)
E =

1 x1 x2 x21 x1x2 x22



f1 1 2 1 1

f2 0 0 1

x1f2 0 0 1

x2f2 0 0 1

f3 2 0

x1f3 2 0

x2f3 2 0

.

There is no finite vector in its tropical right null space and thus there is no
finite solution to the equation f ∇ 0.
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Example: The matrix associated with system (E2) is

M(2)
E =

1 x1 x2 x21 x1x2 x22



f1 1 4 1 3

f2 0 0 1

x1f2 0 0 1

x2f2 0 0 1

f3 2 0

x1f3 2 0

x2f3 2 0

.

The vector y = ver(−3,−1) = (0,−3,−1,−6,−4,−2) is finite and
is in the tropical right null space of the previous matrix, hence there is a
finite solution to the equation f ∇ 0, which is indeed given by (−3,−1).
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Ingredients of the proof

A d × d tropical matrix A = (ai j)1≤i ,j≤d is tropically diagonally
dominant whenever

ai i > ai j

for all 1 ≤ i , j ≤ d such that i 6= j .

Lemma: If A is tropically diagonally dominant, then the only solution
y ∈ Rd∞ to the equation A� y ∇ 0 is y = 0.

Proof: Consider yi = max1≤j≤n yj , then if yi > −∞ then the
inequalities ai i > ai j and yi ≥ yj imply that

ai i + yi > ai j + yj for all 1 ≤ i 6= j ≤ n ,

thus contradicting the assumption that A� y ∇ 0.
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Ingredients of the proof

• If f ∇ 0 has a solution x ∈ Rn, then the Veronese embedding
y = ver(x) := (xp)p∈E ′ of x is a solution toME ′ � y ∇ 0.
• Otherwise we apply a construction from Canny and Emiris (1993)
and Sturmfels (1994) but in a potentially non generic case to show
that there is no finite vector y ∈ RE ′ in the tropical right null space
ofME ′ .
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Ingredients of the proof

• If p ∈ E , then (p − δ, h(p − δ)) is in the relative interior of a facet
F of hypo(h), and F can be written as F1 + · · ·+ Fk with Fi faces
of hypo(hi).
• Since f does not have a common root, at least one Fi is a singleton.
Consider the maximal index j such that Fj = {aj} is a singleton.
The couple (j, aj) is called the row content of p.
• If p ∈ E and if (j, aj) is its row content, then the support of the
polynomialXp−aj fj is included in E . This allows us to construct a
square submatrixMEE = (mpp′)(p,p′)∈E×E ofME .
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Ingredients of the proof

• The matrix M̃EE = (m̃pp′)(p,p′)∈E×E obtained by setting
m̃pp′ = mpp′ − h(p′ − δ) is tropically diagonally dominant.
• Therefore its tropical right null space is reduced to {0}, and thus
this is also the case forMEE .
• Hence there does not exist y ∈ RE such thatME � y ∇ 0.
• Finally, sinceME ′ can be written by block as

ME ′ =

E E ′ \ E( )
ME 0

∗ ∗
,

we deduce that there does also not exist y ∈ RE ′ such that
ME ′ � y ∇ 0.
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Ingredients of the proof

Figure: The polytopeQ+ δ, with the integer points inside the maximal dimensional cells of the
decomposition ofQ+ δ labelled by the row content the cell they belong to.

1, (0, 0)

2, (0, 1)

2, (0, 1)

3, (1, 0)

3, (1, 0)

3, (1, 0)

This configuration yields the following nonsingular square submatrix of
M(1)
E

M(1)
EE =

1 x1 x2 x21 x1x2 x22


(0, 0)→ f1 1 2 1 1

(1, 0)→ f3 2 0

(0, 1)→ f2 0 0 1

(2, 0)→ x1f3 2 0

(1, 1)→ x2f3 2 0

(0, 2)→ x2f2 0 0 1

.
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IV - The tropical Positivstellensatz for sparse
polynomial systems
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• Let f ± = (f ±1 , . . . , f
±
k ) be two collections of tropical polynomials.

For 1 ≤ i ≤ k , denote byA±i the support of f
±
i and let

fi = f
+
i ⊕ f

−
i , with supportAi = A

+
i ∪ A

−
i .

• Set▷ = (▷1, . . . ,▷k) a collection of relations, with
▷i ∈ {≥,=, >} for 1 ≤ i ≤ k .

We denote by f +(x)▷ f −(x) the system

max
α∈A+i

(
f +i ,α + 〈α, x〉

)
▷i max
α∈Ai−

(
f −i ,α + 〈α, x〉

)
for all 1 ≤ i ≤ k

of unknown x ∈ Rn∞.
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• LetM± be the Macaulay matrices associated to f ± — i.e. with
entries f ±i ,β−α. For any subset E of Zn, denote byM

±
E the

submatrices ofM± by taking only the row indices
(i , α) ∈ [k ]× Zn such that the supports of the rows (i , α) of both
M+ andM− is included in E and the column indices given by E .

• Finally, denote byM+
E � y ▷M−

E � y the following system of
tropical linear inequalities:

max
β∈E

(
M+
(i ,α),β

+ yβ

)
▷imax
β∈E

(
M−
(i ,α),β

+ yβ

)
for all 1 ≤ i ≤ k.



31/43

• LetM± be the Macaulay matrices associated to f ± — i.e. with
entries f ±i ,β−α. For any subset E of Zn, denote byM

±
E the

submatrices ofM± by taking only the row indices
(i , α) ∈ [k ]× Zn such that the supports of the rows (i , α) of both
M+ andM− is included in E and the column indices given by E .
• Finally, denote byM+

E � y ▷M−
E � y the following system of

tropical linear inequalities:

max
β∈E

(
M+
(i ,α),β

+ yβ

)
▷imax
β∈E

(
M−
(i ,α),β

+ yβ

)
for all 1 ≤ i ≤ k.



32/43

Let Q̃ = r1Q1 + · · ·+ rkQk , whereQi = conv(Ai) for i = 1, . . . , k ,
and

ri =

{
min(|A−i |, n + 1) if▷i ∈ {≥, >}
min(max(|A−i |, |A

+
i |), n + 1) if▷I ∈ {=} .

We now call Canny-Emiris subsets of Zn associated to the pair of
collections (f +, f −) any set E of the form

E :=
(
Q̃+ δ

)
∩ Zn ,

where δ is a generic vector in V + Zn, with V the direction of the affine
hull of Q̃.
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Main ingredient of the proof

The Shapley-Folkman Lemma

Let A1, . . . , Ak ⊆ Rn, and let

x ∈
k∑
i=1

conv(Ai) .

Then there is an index set I ⊆ {1, . . . , k} with |I| ≤ n such that

x ∈
∑
i∈I
conv(Ai) +

∑
i∈{1,...,k}\I

Ai .

Corollary: If
∑k
i=1 conv(Ai) has (affine) dimension d < n, then the

index set I can be choosen such that |I| ≤ d .
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Tropical Positivstellensatz

There exists a solution x ∈ Rn to the system f +(x) ▷ f −(x) if and
only if there exists a vector y ∈ RE ′ satisfyingM+

E ′ � y ▷M
−
E ′ � y ,

where E ′ is any subset of Zn containing a nonempty Canny-Emiris
subset E of Zn associated to the pair (f +, f −).

Corollary: Let f ±0 , . . . , f
±
k be a collection of pairs of tropical

polynomials. Then, the following implication holds for all x ∈ Rn(
∀1 ≤ i ≤ k, f +i (x) ≥ f

−
i (x)

)
=⇒ f +0 (x) ≥ f

−
0 (x)

iff the Macaulay linearizationM+
E ′ � y ▷M

−
E ′ � y associated to the

relations f +i (x) ≥ f
−
i (x) for i = 1, . . . , k and f

+
0 (x) < f

−
0 (x), where

E ′ is as above, has no finite solution y .
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V - Algorithmical aspects
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Mean payoff games (See Gillette (1957),
Gurvich, Karzanov, Khachiyan (1988),
Zwick, Patterson (1996)):

• G = (I t J, E) a (finite) oriented weighter bipartite graph;
• game with two players Min and Max: each turn, from the current
state i ∈ I, player Max chooses a state j ∈ J such that (i , j) is an
arc of G with weight bi j and obtains a payment of bi j from player
Min, then player Min from state j ∈ J, chooses the next state
k ∈ I along an arc (k, j) with weight akj , and receives in turn a
payment of akj from player Max ;
• the winner is the player who gets the highest average payment per
turn;
• set A = (ai j)(i ,j)∈I×J et B = (bi j)(i ,j)∈I×J .
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Example : Let G be the following
graph:

1

−3

−12

5

2

8

0

2

1

3

2

1

−9

One has A =

 2 −∞
8 −∞
−∞ 0

 and B =

 1 −∞
−3 −12
−9 5

 .
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Theorem [Akian, Gaubert, Guterman (2012)] : For all j ∈ J, player
Max has a winning positional strategy for the mean pay-off game given
by the paymentmatricesA andB by playing the initial move j iff there
exists a solution y ∈ RJ∞ of the tropical matrix inequality A � y ≤
B � y such that yj 6= 0.

The winning initial moves correspond to the support of the solutions of
the inequality A� y ≤ B � y .
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In the previous example,

1

−3

−12

5

2

8

0

2

1

3

2

1

−9

one has A�y ≤ B�y ⇐⇒


2 + y1 ≤ 1 + y1
8 + y1 ≤ max(−3 + y1,−12 + y2)
y2 ≤ max(−9 + y1, 5 + y2).

The first inequality shows that every solution y ∈ R2∞ must satisfy
y1 = 0, which implies that the two other inesualities are satisfied for all
values of y2 ∈ R∞.

This translates into the fact that the move 1 is a losing move for player
Max, while the move 2 is a winning move.
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• Shapley operator associated to a mean payoff game

T :
R ∪ {±∞} −→ R ∪ {±∞}
y = (yj)j∈J 7→

(
mini∈I −aik +

(
maxj∈J bi j + yj

))
)k∈J

• value of the game: χ(T ) = limn→+∞ T n(0)
n

Corollary: ∃y ∈ Rn such that A� y ≤ B � y iff χ(f ) ≥ 0.

• The existence of a polynomial time algorithm to solve mean payoff
games is an open problem since 1988, but but there exist practically
fast methods (value/policy iteration algorithms).
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Value iteration algorithm

Algorithm 1: Value iteration algorithm with widening.
input: T a Shapley operator from (R ∪ {+∞})m to

(R ∪ {+∞})m ε > 0 the approximation error for
comparisons

output: Decides the feasibility of the systemA� y ≤ B� y inRm
1 procedure ValueIteration(T , ε):
2 u := 0 ∈ Rm
3 v := 0 ∈ Rm
4 repeat

/* value iteration step */
5 u := v

6 v := u ∧ T (u)
/* widening step */

7 I := {i : vi ≥ −ε+ ui}
8 ũ := (ũi) ∈ (R ∪ {+∞})m with ũi = +∞ if i ∈ I

and ũi = ui otherwise
9 ṽ := T (ũ)

10 until v ≥ −ε+ u or v � −ε+ u or ṽ � −ε+ ũ
11 if v � −ε+ u or ṽ � −ε+ ũ then

/* No finite vector y satisfies T (y) ≥ −ε+ y.
*/

12 return “Unfeasible”
13 else

/* The vector u satisfies T (u) ≥ −ε+ u. */
14 return “Feasible”

For two vectors u, v ∈ (R ∪ {+∞})n , we
write v ≪ u if for all i such that ui < +∞,
we have vi < ui , and for λ ∈ R, we denote
λ+ u the vector with coordinates λ+ ui .

Notice that the time of a single iteration is
proportional to the number of nonzero
entries of the matrix.
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Python implementation of the algorithm available at:

https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving

The bottleneck resides mainly in the computation of the Minkowski sum
of the Newton polytopes of the polynomials of the system.

Table: Average number of columns in the Macaulay matrices in the sparse case (right) for random
systems of k inequations in n variables among 100 samples, compared to the number of columns in
the full case (left).

k

2 3 4 5 6

n

2 45 - 35 91 - 73 153 - 128 231 - 193 325 - 276
3 165 - 85 455 - 265 969 - 611 1771 - 1156 2925 - 1987
4 495 - 138 1820 - 651 4845 - 2079 10626 - 5044 20475 - 10418
5 1287 - 163 6188 - 1268 20349 - 5165 53130 - × 118755 - ×
6 3003 - 154 18564 - ∼1300 74613 - × 230230 - × 593775 - ×

https://gitlab.inria.fr/abereau/tropical-polynomial-system-solving
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Table:Number of feasible instances for random systems of k inequations in n variables among 100
samples.

k

2 3 4 5 6 7 8 9 10

n

2 97 91 62 48 38 28 12 12 5
3 100 98 97 79 74 62 48 32 17
4 100 100 100 100 93 92 80 × ×
5 100 100 100 × × × × × ×
6 100 100 × × × × × × ×

Table: Average runtime in seconds to solve an instance of a random system of k inequations in n
variables among 100 samples.

k

2 3 4 5 6 7 8 9 10

n

2 0.04 0.16 0.67 1.58 2.91 3.73 2.43 4.55 2.53
3 0.08 0.71 3.82 8.80 33.45 84.87 183.26 180.58 154.43
4 0.74 2.95 11.54 48.47 266.95 654.06 1952.40 × ×
5 5.09 64.94 312.66 × × × × × ×
6 67.60 2427.67 × × × × × × ×
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Incoming work:
• Faster algorithm using the policy iteration method
• Tropical analog of eigenvalue methods: we can effectively recover
the solution by solving a parametric mean payoff game (current
work)
• Open problem: can the degree bound be improved in the
Positivstellensatz (no tight example found yet)
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Thank you for your attention!
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