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We fix a collection f = (f1, . . . , fk) of tropical polynomials in n variables with respective
degrees (d1, . . . , dk).

Motivation

Theorem (Tropical Dual Nullstellensatz, [GP18]) The polynomials of f have a common root
x ∈ Rn iff there exists a vector y ∈ Rm with m =

(N+n
n

)
in the tropical right null space of

the truncated Macaulay matrix MN for
N = (n + 2)(d1 + · · · + dk) .

Question : What is the smallest possible value ofN such that this result holds and how can this
result be expressed for sparse polynomials?

Tropical Polynomials

• Tropical semiring: R∞ = (R ∪ {−∞}, ⊕, ⊙) with addition ⊕ := max, multiplication ⊙ := +,
zero element 0 := −∞ and unit element 1 := 0.

• x ∈ Rn
∞ is a root of a tropical polynomial p whenever the maximum in the expression

p(x) =
⊕
α∈A

pα ⊙ x⊙α = max
α∈A

(pα + ⟨x, α⟩)

is attained twice, where A ⊂ Zn is the support of p. This is denoted as p(x) ∇ 0.
• y is in the tropical right null space of a ℓ × m matrix A = (aij) whenever for all 1 ≤ i ≤ ℓ, the
maximum in the expression

m⊕
j=1

aij ⊙ yj = max
1≤j≤m

(aij + yj)

is attained twice. This is denoted as A ⊙ y ∇ 0.

The Macaulay matrix

• TheMacaulay matrix associated to f is the matrix M = (m(i,α),β) indexed by ([n] × Zn) × Zn,
where m(i,α),β corresponds to the coefficient of Xβ in the tropical polynomial Xαfi.

• A finite subset E of Zn yields a submatrix ME of M obtained by taking only the rows whose
support is included in E and the columns indexed by E .

• For E = {α ∈ Nn : α1 + · · · αn ≤ N}, we denote MN := ME .

Newton polytopes

• Set for 1 ≤ i ≤ k, Qi := conv(Ai) theNewton polytope of fi and Q = Q1 + · · · + Qk.
• The upper hull of the lifted support {(α, fi,α) : α ∈ Ai} is the graph of a function hi with
support Qi and if h := h1 □ · · · □ hk where □ denotes the sup-convolution, then
hypo(h) = hypo(h1) + · · · + hypo(hk).

• The projection of hypo(h) onto Q yields a coherent mixed subdivision of Q.

Canny-Emiris subsets of Zn

Canny-Emiris set associated to f : any set of the form E = (Q + δ) ∩ Zn with δ a generic vector
in the linear space directing the affine hull of Q.

Examples

Consider (E1) :


f1 = 1 ⊕ 2x1 ⊕ 1x2 ⊕ 1x1x2
f2 = 0 ⊕ 0x1 ⊕ 1x2
f3 = 2x1 ⊕ 0x2

and (E2) :


f1 = 1 ⊕ 4x1 ⊕ 1x2 ⊕ 3x1x2
f2 = 0 ⊕ 0x1 ⊕ 1x2
f3 = 2x1 ⊕ 0x2 .

The Newton polytopes associated to both systems and their Minkowski sum are as follow.
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For δ = (−1 + ε, −1 + ε) with ε > 0 sufficiently small, we obtain the Canny-Emiris set

E := (Q + δ) ∩ Zn = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}

corresponding to the set of monomials {1, x1, x2, x2
1, x1x2, x2

2}. The associated matrices are

M(1)
E =

1 x1 x2 x2
1 x1x2 x2

2



f1 1 2 1 1
f2 0 0 1

x1f2 0 0 1
x2f2 0 0 1

f3 2 0
x1f3 2 0
x2f3 2 0

and M(2)
E =

1 x1 x2 x2
1 x1x2 x2

2



f1 1 4 1 3
f2 0 0 1

x1f2 0 0 1
x2f2 0 0 1

f3 2 0
x1f3 2 0
x2f3 2 0

.

(a) The arrangement of tropical varieties of the polynomials from the system (E1).
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(b) The subdivision of Q associated to (E1).
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(c) The arrangement of tropical varieties of the polynomials from the system (E2).
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(d) The subdivision of Q associated to (E2).
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(e) The subdivision of Q associated to (E1) arises from the projection of the Minkowski
sum of the hypographs of the hi.
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(f) The polytope Q + δ, with interior integer points labelled by the
row content of the cell they belong to for system (E1).
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For the system (E1), we obtain the matrix M(1)
EE =

1 x1 x2 x2
1 x1x2 x2

2



(0, 0) → f1 1 2 1 1
(1, 0) → f3 2 0
(0, 1) → f2 0 0 1
(2, 0) → x1f3 2 0
(1, 1) → x2f3 2 0
(0, 2) → x2f2 0 0 1

which is nonsingular.

For the system (E2), for y = ver(−3, −1) = (0, −3, −1, −6, −4, −2), we obtain M(2)
E ⊙ y ∇ 0.

Nullstellensatz for Sparse Tropical Polynomial Systems

Theorem The system f ∇ 0 has a solution x ∈ Rn iff there exists a vector y ∈ RE ′ in the tropical
right null space of the submatrix ME ′ of M, where E ′ is any subset of Zn containing a nonempty
Canny-Emiris set E .

Corollary The system f ∇ 0 has a solution x ∈ Rn if and only if the truncated Macaulay tropical
linear system MN ⊙ y ∇ 0 has a solution y ∈ Rm for N = d1 + · · · + dk.

The Canny-Emiris construction

• If f ∇ 0 has a solution x ∈ Rn, then y = (xp)p∈E ′ of x is a solution to ME ′ ⊙ y ∇ 0.
•Otherwise we apply the Canny-Emiris construction from [CE93] and [Stu94] but in a
potentially non generic case. If p ∈ Q, then (p − δ, h(p − δ)) is in the relative interior of a facet
F of hypo(h), and F can be written as F1 + · · · + Fk with Fi faces of hypo(hi).

• Since f does not have a common root, at least one Fi is a singleton. Consider the maximal index
j such that Fj = {aj} is a singleton. The couple (j, aj) is called the row content of p.

• If p ∈ E and if (j, aj) is its row content, then the support of the polynomial Xp−ajfj is included
in E . This allows us to construct a square submatrix MEE = (mpp′)(p,p′)∈E×E of ME .

• The matrix M̃EE = (m̃pp′)(p,p′)∈E×E obtained by setting m̃pp′ = mpp′ − h(p′ − δ) is tropically
diagonally dominant, and therefore its tropical right null space is reduced to {0}, and thus this
is also the case for MEE , hence there does not exist y ∈ RE such that ME ⊙ y ∇ 0.

Perspectives and related results

•We can in fact retrieve the Macaulay bound in most cases.
• Tropical resultant polynomial based on [JY13] and generalizing tropical Cramer’s theorem from
[AGG08] in the case k = n + 1 but no tropical determinental formula yet.

•Work in progress: Nullstellensatz for two-sided systems of the form f+ ≥ f−, f+ = f− and
f+ > f−, relying on the Shapley-Folkman and adding a factor n + 1 in the truncation degreeN :

Positivstellensatz for Sparse Tropical Polynomial Systems

Theorem For ⋄ ∈ {≥, =, >}, the polynomial system f+ ⋄ f− has a solution x ∈ Rn iff the linear
system M+

E ′ ⋄ M−
E ′ has a solution y ∈ RE ′, where E ′ is any subset of Zn containing a nonempty

Canny-Emiris set E = ((n + 1)Q + δ) ∩ Zn.

CorollaryWe can similarly deal with mixed systems, and in particular with problems of the form

f+
1 ≥ f−

1 , . . . , f+
k ≥ f−

k
?⇒ g+ ≥ g− .

• Incoming work: tropical eigenvalue method to solve effectively tropical polynomial systems.
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