

We fix a collection $f = (f_1, \ldots, f_k)$ of tropical polynomials in n variables with respective degrees (d_1, \ldots, d_k) .

Motivation

Theorem (Tropical Dual Nullstellensatz, [GP18]) The polynomials of f have a common root $x \in \mathbb{R}^n$ iff there exists a vector $y \in \mathbb{R}^m$ with $m = \binom{N+n}{n}$ in the tropical right null space of the truncated Macaulay matrix \mathcal{M}_N for

$$N = (n+2)(d_1 + \dots + d_k) \quad .$$

Question : What is the smallest possible value of N such that this result holds and how can this result be expressed for **sparse** polynomials?

Tropical Polynomials

- Tropical semiring: $\mathbb{R}_{\infty} = (\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$ with $\oplus := \max, \odot := +$, zero element $\mathbb{O} := -\infty$ and unit element 1 := 0.
- $x \in \mathbb{R}^n_{\infty}$ is a **root** of a tropical (Laurent) polynomial p whenever the maximum in the expression

$$p(x) = \bigoplus_{\alpha \in \mathcal{A}} p_{\alpha} \odot x^{\odot \alpha} = \max_{\alpha \in \mathcal{A}} (p_{\alpha} + \langle x, \alpha \rangle)$$

- is attained twice, where $\mathcal{A} \subset \mathbb{Z}^n$ is the support of p. This is denoted as $p(x) \nabla \mathbb{O}$. • y is in the tropical right null space of a $\ell \times m$ matrix $A = (a_{ij})$ whenever for all $1 \le i \le \ell$, the
- maximum in the expression

$$\bigoplus_{j=1}^{m} a_{ij} \odot y_j = \max_{1 \le j \le m} (a_{ij} + y_j)$$

is attained twice. This is denoted as $A \odot y \nabla \mathbb{O}$.

The Macaulay matrix

- The Macaulay matrix associated to f is the (infinite) matrix $\mathcal{M} = (m_{(i,\alpha),\beta})$ indexed by $([n] \times \mathbb{Z}^n) \times \mathbb{Z}^n$, where $m_{(i,\alpha),\beta}$ corresponds to the coefficient of X^{β} in the tropical polynomial $X^{\alpha}f_{i}$.
- A finite subset \mathcal{E} of \mathbb{Z}^n yields a (finite) submatrix $\mathcal{M}_{\mathcal{E}}$ of \mathcal{M} obtained by taking only the rows whose support is included in \mathcal{E} and the columns indexed by \mathcal{E} .
- For $\mathcal{E} = \{ \alpha \in \mathbb{N}^n : \alpha_1 + \cdots + \alpha_n \leq N \}$, we denote $\mathcal{M}_N := \mathcal{M}_{\mathcal{E}}$.

Newton polytopes

- Set for $1 \le i \le k$, $Q_i := \operatorname{conv}(\mathcal{A}_i)$ the Newton polytope of f_i and $Q = Q_1 + \cdots + Q_k$.
- The upper hull of the lifted support $\{(\alpha, f_{i,\alpha}) : \alpha \in A_i\}$ is the graph of a function h_i with support Q_i and if $h := h_1 \Box \cdots \Box h_k$ where \Box denotes the sup-convolution, then $hypo(h) = hypo(h_1) + \dots + hypo(h_k).$
- The projection of hypo(h) onto Q yields a coherent mixed subdivision of Q.

Canny-Emiris subsets of \mathbb{Z}^n

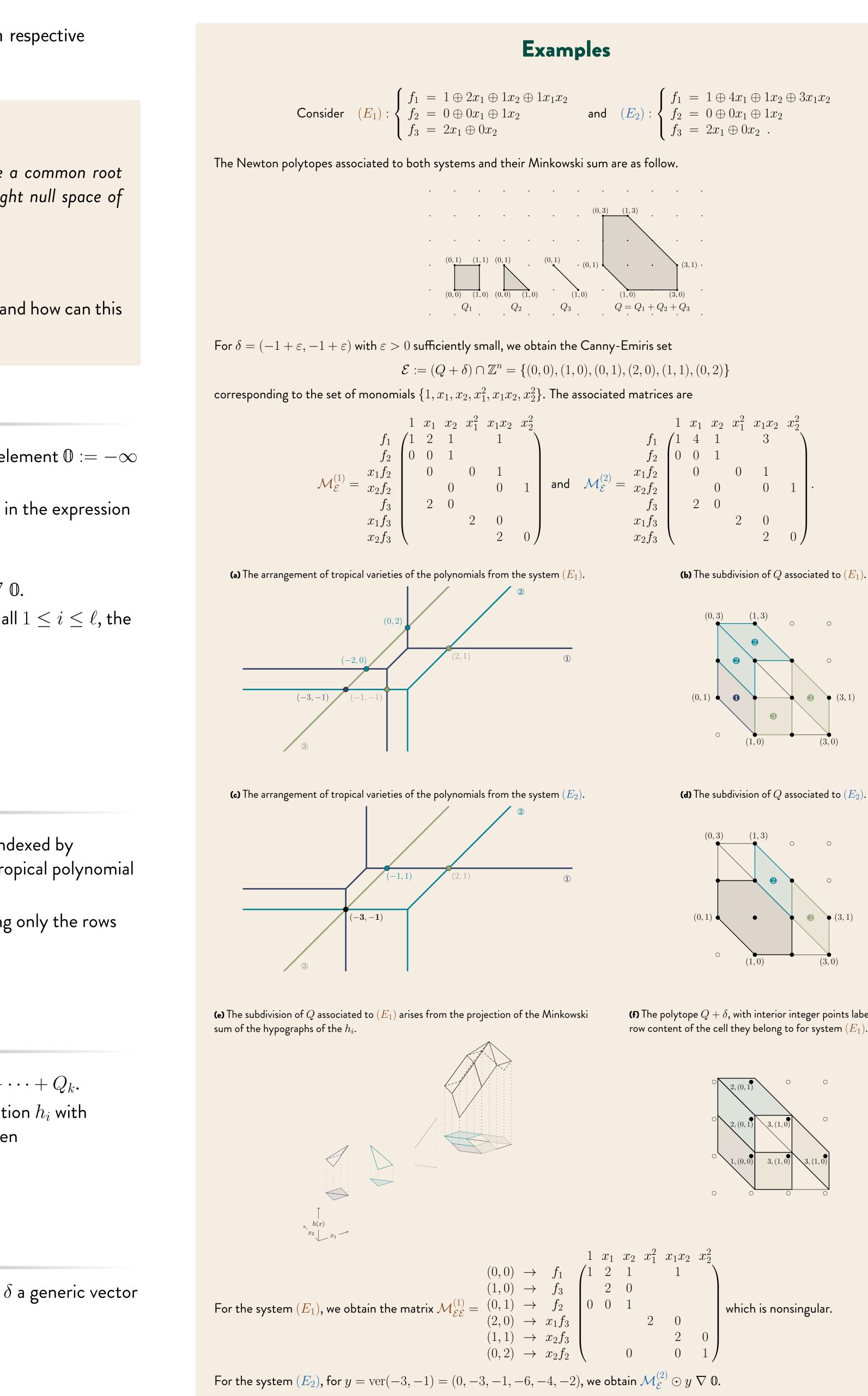
Canny-Emiris set associated to f: any set of the form $\mathcal{E} = (Q + \delta) \cap \mathbb{Z}^n$ with δ a generic vector in the linear space directing the affine hull of Q.

The Nullstellensatz for Sparse Tropical Polynomial Systems

Antoine Béreau (antoine.bereau@inria.fr)

supervised by Marianne Akian and Stéphane Gaubert

CMAP (École polytechnique), IP Paris, CNRS, Inria



(b) The subdivision of Q associated to (E_1) .

(d) The subdivision of Q associated to (E_2) .

(f) The polytope $Q + \delta$, with interior integer points labelled by the

Nullstellensatz for Sparse Tropical Polynomial Systems

Theorem The system $f \nabla 0$ has a solution $x \in \mathbb{R}^n$ iff there exists a vector $y \in \mathbb{R}^{\mathcal{E}'}$ in the tropical right null space of the submatrix $\mathcal{M}_{\mathcal{E}'}$ of \mathcal{M} , where \mathcal{E}' is any subset of \mathbb{Z}^n containing a nonempty Canny-Emiris set \mathcal{E} .

Corollary The system $f \nabla 0$ has a solution $x \in \mathbb{R}^n$ if and only if the truncated Macaulay tropical linear system $\mathcal{M}_N \odot y \nabla \mathbb{O}$ has a solution $y \in \mathbb{R}^m$ for $N = d_1 + \cdots + d_k$.

The Canny-Emiris construction

Perspectives and related results

- The optimal value of N seems to be $d_1 + \cdots + d_k \max(n, k-1)$.
- [AGG08] in the case k = n + 1.
- Positivestellensatz for systems of the form $f^+ = f^-$ and $f^+ \ge f^-$.
- element.

[AGG08]	Marianne Akian, Stéphane Gaubert and Alexand <i>Math.</i> (2008) 495
[CE93]	John Canny and Ioannis Emiris, An efficient algo
[GP18]	Dima Grigoriev and Vladimir V. Podolskii, Tropica 59 :507-522
[JY13]	Anders Jensen and Josephine Yu, Computing tro
[Stu94]	Bernd Sturmfels, On the Newton Polytope of th

• If $f \nabla \mathbb{O}$ has a solution $x \in \mathbb{R}^n$, then $y = (x_p)_{p \in \mathcal{E}'}$ of x is a solution to $\mathcal{M}_{\mathcal{E}'} \odot y \nabla \mathbb{O}$. • Otherwise we apply the Canny-Emiris construction from [CE93] and [Stu94] but in a potentially **non generic** case. If $p \in Q$, then $(p - \delta, h(p - \delta))$ is in the relative interior of a facet F of hypo(h), and F can be written as $F_1 + \cdots + F_k$ with F_i faces of hypo(h_i). • Since f does not have a common root, at least one F_i is a singleton. Consider the maximal index j such that $F_j = \{a_j\}$ is a singleton. The couple (j, a_j) is called the **row content** of p. • If $p \in \mathcal{E}$ and if (j, a_j) is its row content, then the support of the polynomial $X^{p-a_j}f_j$ is included in \mathcal{E} . This allows us to construct a square submatrix $\mathcal{M}_{\mathcal{E}\mathcal{E}} = (m_{pp'})_{(p,p')\in\mathcal{E}\times\mathcal{E}}$ of $\mathcal{M}_{\mathcal{E}}$. • The matrix $\widetilde{\mathcal{M}}_{\mathcal{E}\mathcal{E}} = (\widetilde{m}_{pp'})_{(p,p')\in\mathcal{E}\times\mathcal{E}}$ obtained by setting $\widetilde{m}_{pp'} = m_{pp'} - h(p' - \delta)$ is tropically **diagonally dominant**, and therefore its tropical right null space is reduced to $\{0\}$, and thus this is also the case for $\mathcal{M}_{\mathcal{E}\mathcal{E}}$, hence there does not exist $y \in \mathbb{R}^{\mathcal{E}}$ such that $\mathcal{M}_{\mathcal{E}} \odot y \nabla \mathbb{O}$.

• Tropical resultant polynomial based on [JY13] and generalizing tropical Cramer's theorem from

• Generalization to any tropical semiring obtained from a totally ordered group with bottom

References

Ider Guterman, Linear independence over tropical semirings and beyond, Contemp.

orithm for the sparse mixed resultant (1993) **263**:89-104 cal Effective Primary and Dual Nullstellensätze, Discrete Comput Geom (2018)

ropical resultants, Journal of Algebra (2013) **387**:287-319. the Resultant, Journal of Algebraic Combinatorics (1994) **3**(2):207-236

